(08年湖北卷文)(本不題滿分12分)
如圖,要設(shè)計(jì)一張矩形廣告,該廣告含有大小相等的左右兩個矩形欄目(即圖中陰影部分),這兩欄的面積之和為18000cm2,四周空白的寬度為10cm,兩欄之間的中縫空白的寬度為5cm,怎樣確定廣告的高與寬的尺寸(單位:cm),能使矩形廣告面積最小?
解法1:設(shè)矩形欄目的高為a cm,寬為b cm,則ab=9000. ①
廣告的高為a+20,寬為2b+25,其中a>0,b>0.
廣告的面積S=(a+20)(2b+25)
=2ab+40b+25a+500=18500+25a+40b
≥18500+2=18500+
當(dāng)且僅當(dāng)25a=40b時等號成立,此時b=,代入①式得a=120,從而b=75.
即當(dāng)a=120,b=75時,S取得最小值24500.
故廣告的高為140 cm,寬為175 cm時,可使廣告的面積最小.
解法2:設(shè)廣告的高為寬分別為x cm,y cm,則每欄的高和寬分別為x-20,其中x>20,y>25
兩欄面積之和為2(x-20),由此得y=
廣告的面積S=xy=x()=x,
整理得S=
因?yàn)?I>x-20>0,所以S≥2
當(dāng)且僅當(dāng)時等號成立,
此時有(x-20)2=14400(x>20),解得x=140,代入y=+25,得y=175,
即當(dāng)x=140,y=175時,S取得最小值24500,
故當(dāng)廣告的高為140 cm,寬為175 cm時,可使廣告的面積最小.
【試題解析】本題是解不等式,當(dāng)然要注意問題的轉(zhuǎn)化。
【高考考點(diǎn)】本題主要考查根據(jù)實(shí)際問題建立數(shù)學(xué)模型,以及運(yùn)用函數(shù)、不等式等知識解決實(shí)際問題的能力.【易錯提醒】不等式解出后在寫最后的結(jié)果時出錯;求導(dǎo)求錯。
【備考提示】解不等式是高中數(shù)學(xué)的重要內(nèi)容,不等式問題貫穿高中數(shù)學(xué)的始終;導(dǎo)數(shù)是新增加的內(nèi)容,是處理許多問題的有利工具,是高考的必考內(nèi)容,考生一定要認(rèn)真掌握。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(08年湖北卷文)(本小題滿分13分)
已知雙同線的兩個焦點(diǎn)為
的曲線C上.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)記O為坐標(biāo)原點(diǎn),過點(diǎn)Q (0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為求直線l的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年湖北卷文)(本小題滿分12分)
如圖,在直三棱柱中,平面側(cè)面
(Ⅰ)求證:
(Ⅱ)若,直線AC與平面所成的角為,二面角
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年湖北卷文)(本小題滿分12分)
如圖,在直三棱柱中,平面側(cè)面
(Ⅰ)求證:
(Ⅱ)若,直線AC與平面所成的角為,二面角
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年湖北卷文)(本小題滿分12分)
已知函數(shù)(為常數(shù),且)有極大值9。
(1) 求的值;
(2) 若斜率為-5的直線是曲線的切線,求此直線方程。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com