在△ABC中,如果A=60°,c=4,a=4,則此三角形有(  )
A、一解B、無窮多解C、兩解D、無解
分析:首先利用正弦定理得出角C的度數(shù),然后根據(jù)條件和三角形的內(nèi)角和得出結(jié)論.
解答:解:根據(jù)正弦定理得,
a
sinA
=
c
sinC

∴sinC=
c•sinA
a
=
3
2
4
=
3
2

∵C∈(0,180°)
∴∠C=60°或120°
∵c=4,a=4∠A+∠B+∠C=180°
∴∠C=60°
∴在△ABC中,如果A=60°,c=4,a=4,則此三角形有一解
故選A.
點評:本題考查了正弦定理,解題過程中尤其要注意三角形的內(nèi)角和的運用,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,如果a:b:c=3:2:4,那么cosC=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,如果∠A:∠B:∠C=1:2:3,那么a:b:c等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,如果a:b:c=2:3:4,那么cosC=
-
1
4
-
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①若數(shù)列{an}的前n項和Sn=2n+1,則數(shù)列{an}為等比數(shù)列;
②在△ABC中,如果A=60°,a=
6
,b=4
,那么滿足條件的△ABC有兩解;
③設(shè)函數(shù)f(x)=x|x-a|+b,則函數(shù)f(x)為奇函數(shù)的充要條件是a2+b2=0;
④設(shè)直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),則M中的直線所能圍成的正三角形面積都相等.
其中真命題的序號是

查看答案和解析>>

同步練習冊答案