已知點(diǎn)是拋物線的焦點(diǎn),是拋物線上的兩點(diǎn),,則線段的中點(diǎn)到軸的距離為( )
A. | B. | C. | D. |
C
解析試題分析:根據(jù)拋物線的方程求出準(zhǔn)線方程,利用拋物線的定義拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,列出方程求出A,B的中點(diǎn)橫坐標(biāo),求出線段AB的中點(diǎn)到y(tǒng)軸的距離。根據(jù)題意,由于點(diǎn)是拋物線的焦點(diǎn),則為F(),準(zhǔn)線方程為,則根據(jù)設(shè)
故可知線段的中點(diǎn)到軸的距離為,選C.
考點(diǎn):拋物線的定義
點(diǎn)評(píng):本題考查解決拋物線上的點(diǎn)到焦點(diǎn)的距離問(wèn)題,利用拋物線的定義將到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
設(shè)直線的斜率為2且過(guò)拋物線的焦點(diǎn)F,又與軸交于點(diǎn)A,為坐標(biāo)原點(diǎn),若的面積為4,則拋物線的方程為:
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知直線與平面平行,P是直線上的一點(diǎn),平面內(nèi)的動(dòng)點(diǎn)B滿足:PB與直線成。那么B點(diǎn)軌跡是
A.雙曲線 | B.橢圓 | C.拋物線 | D.兩直線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
如果雙曲線上一點(diǎn)P到它的右焦點(diǎn)距離是8,那么點(diǎn)P到它的左焦點(diǎn)的距離是( )
A.4 | B.12 | C.4或12 | D.不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知雙曲線的漸近線為,焦點(diǎn)坐標(biāo)為(-4,0),(4,0),則雙曲線方程為( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知直線與拋物線相交于兩點(diǎn),F(xiàn)為拋物線的焦點(diǎn),若,則k的值為( )。
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
拋物線的焦點(diǎn)為F,點(diǎn)A、B在拋物線上,且,弦AB的中點(diǎn)M在準(zhǔn)線l上的射影為,則的最大值為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com