在如圖所示的幾何體中,四邊形均為全等的直角梯形,且.

(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值.

(Ⅰ)證明過(guò)程詳見(jiàn)解析;(Ⅱ).

解析試題分析:本題考查線面平行的判定以及二面角的求法.線面平行的判斷:①判定定理:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;②性質(zhì):如果兩個(gè)平面平行,其中一個(gè)平面內(nèi)的直線必平行于另一個(gè)平面;③性質(zhì):如果兩條平行線中的一條平行于一個(gè)平面,那么另一條也平行于這個(gè)平面或在這個(gè)平面內(nèi);④性質(zhì):如果一條直線平行于兩個(gè)平行平面中的一個(gè),那么這條直線也平行于另一個(gè)平面或在這個(gè)平面內(nèi);⑤性質(zhì):如果一個(gè)平面和平面外的一條直線都垂直于同一平面,那么這條直線和這個(gè)平面平行.第一問(wèn)是利用線面平行的判定定理證明;第二問(wèn)建立空間直角坐標(biāo)系是關(guān)鍵,利用向量法得到平面的一個(gè)法向量為,和平面的一個(gè)法向量為,再利用夾角公式求夾角的余弦,但是需判斷夾角是銳角還是鈍角,進(jìn)一步判斷余弦值的正負(fù).
試題解析:(Ⅰ)連結(jié),由題意,可知
故四邊形是平行四邊形,所以
平面平面,
所以平面.              5分

(Ⅱ)由題意,兩兩垂直,
軸,軸建立空間直角坐標(biāo)系
設(shè),則,
設(shè)平面的一個(gè)法向量為,
,
,,
所以,取
同理,得平面的一個(gè)法向量為
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0c/c/1o78p4.png" style="vertical-align:middle;" />,又二面角為鈍角,
所以二面角的余弦值.        12分
考點(diǎn):1.線面平行的判斷定理;2.向量法解題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=2(1)PD.

(1)證明:平面PQC⊥平面DCQ;
(2)求二面角D—PQ—C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知直角梯形,邊上的中點(diǎn)(如圖甲),,,將沿折到的位置,使,點(diǎn)上,且(如圖乙)

(Ⅰ)求證:平面ABCD.
(Ⅱ)求二面角E?AC?D的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在四棱錐中,底面是正方形,側(cè)面是正三角形,平面底面

(I) 證明:平面;
(II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐中,底面是矩形,底面,的中點(diǎn),已知,,

求:(Ⅰ)三角形的面積;(II)三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐的底面為矩形,,,分別是的中點(diǎn),

(Ⅰ)求證:平面;
(Ⅱ)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐中,底面為菱形,,的中點(diǎn)。

(1)若,求證:平面;
(2)點(diǎn)在線段上,,試確定的值,使;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),曲線處的切線過(guò)點(diǎn).
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱柱中, 上的點(diǎn)且邊上的高.
(Ⅰ)求證:平面
(Ⅱ)求證:;
(Ⅲ)線段上是否存在點(diǎn),使平面?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案