已知有窮數(shù)列{an}共有2k項(xiàng)(整數(shù)k≥2),首項(xiàng)a1=2.設(shè)該數(shù)列的前n項(xiàng)和為Sn,且an+1=(a-1)Sn+2(n=1,2,…,2k-1),其中常數(shù)a>1.
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)若a=2
2
2k-1
,數(shù)列{bn}滿足bn=
1
n
log2(a1a2an)
(n=1,2,…,2k),求數(shù)列{bn}的通項(xiàng)公式;
(3)若(2)中的數(shù)列{bn}滿足不等式|b1-
3
2
|+|b2-
3
2
|+…+|b2k-1-
3
2
|+|b2k-
3
2
|≤4,求k的值.
分析:(1)要利用分類討論的思想,分別對(duì)n=1時(shí)和2≤n≤2k-1時(shí)進(jìn)行討論,進(jìn)而獲得an與an+1的關(guān)系,故可獲得問題的解答;
(2)首先利用(1)的結(jié)論和條件獲得an的表達(dá)式,然后對(duì)a1a2…an進(jìn)行化簡(jiǎn),結(jié)合對(duì)數(shù)運(yùn)算即可獲得數(shù)列{bn}的通項(xiàng)公式;
(3)首先利用分類討論對(duì)bn
3
2
的大小進(jìn)行判斷,然后對(duì)所給不等式去絕對(duì)值,即可找到關(guān)于k的不等式,進(jìn)而問題即可獲得解答.
解答:解:由題意:
(1)證明:
當(dāng)n=1時(shí),a2=2a,則
a2
a1
=a;
當(dāng)2≤n≤2k-1時(shí),an+1=(a-1)Sn+2,an=(a-1)Sn-1+2,
∴an+1-an=(a-1)an,
an+1
an
=a,
∴數(shù)列{an}是等比數(shù)列.
(2)解:由(1)得an=2an-1,
∴a1a2an=2n a1+2+…+(n-1)=2na
n(n-1)
2
=2n+
n(n-1)
2k-1

bn=
1
n
[n+
n(n-1)
2k-1
]=
n-1
2k-1
+1
(n=1,2,2k).
(3)設(shè)bn
3
2
,解得n≤k+
1
2
,又n是正整數(shù),于是當(dāng)n≤k時(shí),bn
3
2
;
當(dāng)n≥k+1時(shí),bn
3
2

原式=(
3
2
-b1)+(
3
2
-b2)+…+(
3
2
-bk)+(bk+1-
3
2
)+…+(b2k-
3
2

=(bk+1+…+b2k)-(b1+…+bk
=[
1
2
(k+2k-1)k
2k-1
+k]-[
1
2
(0+k-1)k
2k-1
+k]
=
k2
2k-1

當(dāng)
k2
2k-1
≤4,得k2-8k+4≤0,4-2
3
≤k≤4+2
3
,又k≥2,
∴當(dāng)k=2,3,4,5,6,7時(shí),
原不等式成立.
點(diǎn)評(píng):本題考查的是數(shù)列與不等式的綜合類問題.在解答的過程當(dāng)中充分體現(xiàn)了分類討論的思想、對(duì)數(shù)運(yùn)算的知識(shí)以及絕對(duì)值和解不等式的知識(shí).值得同學(xué)們體會(huì)和反思.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

10、已知有窮數(shù)列{an}(n=1,2,3,…,6)滿足an∈{1,2,3,…,10},且當(dāng)i≠j(i,j=1,2,3,…,6)時(shí),ai≠aj.若a1>a2>a3,a4<a5<a6,則符合條件的數(shù)列{an}的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知有窮數(shù)列{an}只有2k項(xiàng)(整數(shù)k≥2),首項(xiàng)a1=2,設(shè)該數(shù)列的前n項(xiàng)和為Sn,且Sn=
an+1-2
a-1
(n=1,2,3,…,2k-1)
,其中常數(shù)a>1.
(1)求{an}的通項(xiàng)公式;
(2)若a=2
2
n-1
,數(shù)列{bn}滿足bn=
1
n
log2(a1a2an),(n=1,2,3,…,2k)
,求證:1≤bn≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知有窮數(shù)列{an}只有2k項(xiàng)(整數(shù)k≥2),首項(xiàng)a1=2,設(shè)該數(shù)列的前n項(xiàng)和為Sn,且Sn=
an+1-2
a-1
(n=1,2,3,…,2k-1)
,其中常數(shù)a>1.
(1)求{an}的通項(xiàng)公式;
(2)若a=2
2
2k-1
,數(shù)列{bn}滿足bn=log2an,(n=1,2,3,…,2k),Tn=
1
n
(b1+b2+b3+…+bn)
,求證:1≤Tn≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知有窮數(shù)列{an}共有2k項(xiàng)(整數(shù)k≥2),首項(xiàng)a1=2,設(shè)該數(shù)列的前n項(xiàng)和為Sn,且Sn=
an+1-2
a-1
(n=1,2,3,…,2k-1),其中常數(shù)a>1.
(1)求{an}的通項(xiàng)公式;
(2)若a=2
2
2k-1
,數(shù)列{bn}滿足bn=
1
n
log2(a1a2an)
,(n=1,2,3,…,2k),求證:1≤bn≤2;
(3)若(2)中數(shù)列{bn}滿足不等式:|b1-
3
2
|+|b2-
3
2
|+…+|b2k-1-
3
2
|+|b2k-
3
2
|≤4
,求k的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案