已知圓和點(diǎn).

(1)求以點(diǎn)為圓心,且被軸截得的弦長(zhǎng)為的圓⊙的方程;

(2)過點(diǎn)向圓O引切線,求直線的方程;

(3)設(shè)為⊙上任一點(diǎn),過點(diǎn)向圓O引切線,切點(diǎn)為Q. 試探究:平面內(nèi)是否存在一定點(diǎn),使得為定值?若存在,請(qǐng)舉出一例,并指出相應(yīng)的定值;若不存在,請(qǐng)說明理由.

 

解:(Ⅰ)設(shè)圓的半徑為,則 ……………………………………3分

∴⊙的方程為  ……………………………………………………5分

(Ⅱ)設(shè)切線方程為 ,易得,解得……………8分

  ∴切線方程為 ………………………………………………………10分

(Ⅲ)假設(shè)存在這樣的點(diǎn),點(diǎn)的坐標(biāo)為,相應(yīng)的定值為

根據(jù)題意可得,∴…………………………12分

   (*),

又點(diǎn)在圓上∴,即,代入(*)式得:

  ………………………………14分

若系數(shù)對(duì)應(yīng)相等,則等式恒成立,∴,

解得,

∴可以找到這樣的定點(diǎn),使得為定值. 如點(diǎn)的坐標(biāo)為時(shí),比值為;

點(diǎn)的坐標(biāo)為時(shí),比值為…………………………………………………………16分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓經(jīng)過點(diǎn)(-1,0)和(3,0)且與x=4相切
(1)求圓的方程;
(2)若直線l的斜率是2,并且截圓所得到的弦長(zhǎng)為2
5
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省溫州市龍灣中學(xué)高二第一次月考理科數(shù)學(xué)試卷(帶解析) 題型:解答題

已知圓及點(diǎn).
(1)若為圓上任一點(diǎn),求的最大值和最小值;
(2)已知點(diǎn),直線與圓C交于點(diǎn)A、B.當(dāng)為何值時(shí)取到最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆湖南省張家界市高一下學(xué)期期末聯(lián)考數(shù)學(xué)試卷A(解析版) 題型:解答題

已知圓和點(diǎn)(1)若過點(diǎn)有且只有一條直線與圓相切,求正實(shí)數(shù)的值,并求出切線方程;(2)若,過點(diǎn)的圓的兩條弦互相垂直,設(shè)分別為圓心到弦的距離.

(Ⅰ)求的值;

(Ⅱ)求兩弦長(zhǎng)之積的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆湖北省武漢市高二上學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題

(本題14分)已知圓和點(diǎn)

(1)若過點(diǎn)有且只有一條直線與圓相切,求實(shí)數(shù)的值,并求出切線方程;

(2)若,過點(diǎn)作圓的兩條弦,且互相垂直,求的最大值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省高一下學(xué)期期末考試?yán)砜茢?shù)學(xué)卷 題型:選擇題

已知圓和點(diǎn),若點(diǎn)在圓上且的面積為,則滿足條件的點(diǎn)的個(gè)數(shù)是(     )

A.1       B.2        C.3          D.4

 

查看答案和解析>>

同步練習(xí)冊(cè)答案