設(shè)圓的極坐標(biāo)方程為,以極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸正半軸,兩坐標(biāo)系長(zhǎng)度單位一致,建立平面直角坐標(biāo)系.過(guò)圓上的一點(diǎn)作平行于軸的直線,設(shè)軸交于點(diǎn),向量
(Ⅰ)求動(dòng)點(diǎn)的軌跡方程;
(Ⅱ)設(shè)點(diǎn) ,求的最小值.
(1)        (2)

試題分析:解:(1)由已知得N是坐標(biāo)(m,0)設(shè)Q

點(diǎn)M在圓P=2上   由P=2得

Q是軌跡方程為                   5分
(Ⅱ)Q點(diǎn)的參數(shù)方程為 
        的最小值為            12分
點(diǎn)評(píng):主要是考查了橢圓方程以及橢圓參數(shù)方程的運(yùn)用,求解最值,屬于中檔題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)是直角坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),點(diǎn)到直線(是正常數(shù))的距離為,到點(diǎn)的距離為,且1.
(1)求動(dòng)點(diǎn)P所在曲線C的方程;
(2)直線過(guò)點(diǎn)F且與曲線C交于不同兩點(diǎn)A、B,分別過(guò)A、B點(diǎn)作直線的垂線,對(duì)應(yīng)的垂足分別為,求證=;
(3)記,
(A、B、是(2)中的點(diǎn)),,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓的右焦點(diǎn)為為常數(shù),離心率為,過(guò)焦點(diǎn)、傾斜角為的直線交橢圓與M,N兩點(diǎn),
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)=時(shí),=,求實(shí)數(shù)的值;
(3)試問(wèn)的值是否與直線的傾斜角的大小無(wú)關(guān),并證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知雙曲線的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,則此雙曲線的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知分別是雙曲線的兩個(gè)焦點(diǎn),是以(為坐標(biāo)原點(diǎn))為圓心,為半徑的圓與該雙曲線左支的兩個(gè)交點(diǎn),且是等邊三角形,則雙曲線的離心率為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知雙曲線的漸近線與圓相切,則雙曲線的離心率為(  )
A.B.2C.D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知兩條直線 :y="m" 和: y=(m>0),與函數(shù)的圖像從左至右相交于點(diǎn)A,B ,與函數(shù)的圖像從左至右相交于C,D .記線段AC和BD在X軸上的投影長(zhǎng)度分別為a ,b ,當(dāng)m 變化時(shí),的最小值為
A.           B.        C.    D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

雙曲線的離心率等于2,且與橢圓有相同的焦點(diǎn),求此雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓的右焦點(diǎn)為,右準(zhǔn)線為,離心率為,點(diǎn)在橢圓上,以為圓心,為半徑的圓與的兩個(gè)公共點(diǎn)是

(1)若是邊長(zhǎng)為的等邊三角形,求圓的方程;
(2)若三點(diǎn)在同一條直線上,且原點(diǎn)到直線的距離為,求橢圓方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案