【題目】設(shè)直線l過點(diǎn)P(0,3),和橢圓 交于A、B兩點(diǎn)(A在B上方),試求 的取值范圍

【答案】[
【解析】解:當(dāng)直線l的斜率不存在時(shí),A點(diǎn)坐標(biāo)為(0,2),B點(diǎn)坐標(biāo)為(0,﹣2),這時(shí) =

當(dāng)直線l斜率為k時(shí),直線l方程為y=kx+3,

設(shè)A點(diǎn)坐標(biāo)為(x1,y1),B點(diǎn)坐標(biāo)為(x2,y2),則向量AP=(﹣x1,3﹣y1),向量PB=(x2,y2﹣3),

所以 = ,

因?yàn)橹本€y=kx+3與橢圓有兩個(gè)交點(diǎn),且它們的橫坐標(biāo)不同,

把y=kx+3代入 后的一元二次方程(9k2+4)x2+54k+45=0的判別式(54k)2﹣4(9k2+4)×45>0,

所以k> 或k<﹣ ,

設(shè) =λ,則x1=λx2,

因?yàn)閤1+x2=﹣ ,x1x2= ,

所以(1+λ)x2═﹣ ,(1)

λx22= ,(2)

顯然λ不等于1,解得0<λ<1.

綜上所述 的范圍是[ ).

所以答案是:[ ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) f(x)=ex(ex﹣a)﹣a2x.
(1)討論 f(x)的單調(diào)性;
(2)若f(x)≥0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知復(fù)數(shù)z1=m+ni(m,n∈R),z=x+yi(x,y∈R),z2=2+4i且
(1)若復(fù)數(shù)z1對(duì)應(yīng)的點(diǎn)M(m,n)在曲線 上運(yùn)動(dòng),求復(fù)數(shù)z所對(duì)應(yīng)的點(diǎn)P(x,y)的軌跡方程;
(2)將(1)中的軌跡上每一點(diǎn)按向量 方向平移 個(gè)單位,得到新的軌跡C,求C的軌跡方程;
(3)過軌跡C上任意一點(diǎn)A(異于頂點(diǎn))作其切線,交y軸于點(diǎn)B,求證:以線段AB為直徑的圓恒過一定點(diǎn),并求出此定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某職業(yè)學(xué)校的王亮同學(xué)到一家貿(mào)易公司實(shí)習(xí),恰逢該公司要通過海運(yùn)出口一批貨物,王亮同學(xué)隨公司負(fù)責(zé)人到保險(xiǎn)公司洽談貨物運(yùn)輸期間的投保事宜,保險(xiǎn)公司提供了繳納保險(xiǎn)費(fèi)的兩種方案:
①一次性繳納50萬元,可享受9折優(yōu)惠;
②按照航行天數(shù)交納:第一天繳納0.5元,從第二天起每天交納的金額都是其前一天的2倍,共需交納20天.
請通過計(jì)算,幫助王亮同學(xué)判斷那種方案交納的保費(fèi)較低.

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�