如圖,已知是長軸為的橢圓上三點,點是長軸的一個頂點,過橢圓中心,且.
(1)建立適當?shù)淖鴺讼,求橢圓方程;
(2)如果橢圓上兩點使直線與軸圍成底邊在軸上的等腰三角形,是否總存在實數(shù)使?請給出證明.
(1)(2) 存在實數(shù)使證明:設(shè)直線的方程為,所以直線的方程為由橢圓方程與直線的方程聯(lián)立,消去得
,所以同理
又,所以,所以,即存在實數(shù)使成立
【解析】
試題分析:(1)以為原點,所在的直線為軸建立如圖所示的直角坐標系,則,橢圓方程可設(shè)為
而為橢圓中心,由對稱性知
又,所以
又,所以
所以為等腰直角三角形,所以點的坐標為
將 代入橢圓方程得 則橢圓方程為
(2)由直線與軸圍成底邊在軸上的等腰三角形,設(shè)直線的斜率為,
則直線的斜率為,直線的方程為,
直線的方程為
由橢圓方程與直線的方程聯(lián)立,消去得
①
因為在橢圓上,所以是方程①的一個根,于是
同理
這樣,
又,所以
即.所以,即存在實數(shù)使.
考點:求橢圓方程及直線與橢圓相交韋達定理的應(yīng)用
點評:本題對于高二文科學(xué)生有一定的難度,可區(qū)分出優(yōu)秀學(xué)生與一般學(xué)生
科目:高中數(shù)學(xué) 來源: 題型:
16 |
5 |
16 |
5 |
|
π |
3 |
3 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,已知圓與軸負半軸的交點為. 由點出發(fā)的射線的斜率為. 射線與圓相交于另一點
(1)當時,試用表示點的坐標;
(2)當時,求證:“射線的斜率為有理數(shù)”是“點為單位圓上的有理點”的充要條件;(說明:坐標平面上,橫、縱坐標都為有理數(shù)的點為有理點.我們知道,一個有理數(shù)可以表示為,其中、均為整數(shù)且、互質(zhì))
(3)定義:實半軸長、虛半軸長和半焦距都是正整數(shù)的雙曲線為“整勾股雙曲線”.
當為有理數(shù)且時,試證明:一定能構(gòu)造偶數(shù)個“整勾股雙曲線”(規(guī)定:實軸長和虛軸長都對應(yīng)相等的雙曲線為同一個雙曲線),它的實半軸長、虛半軸長和半焦距的長恰可由點的橫坐標、縱坐標和半徑的數(shù)值構(gòu)成. 說明你的理由并請嘗試給出構(gòu)造方法.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知是長軸為4的橢圓上的三點,點是長軸的一個頂點,過橢圓中心 (如圖),且,
(I)求橢圓的方程;
(Ⅱ)如果橢圓上的兩點,使的平分線垂直于,是否總存在實數(shù),使。請給出證明。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省實驗中學(xué)高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com