【題目】已知函數(shù),且函數(shù)為偶函數(shù)。

1)求的解析式;

2)若方程有三個不同的實數(shù)根,求實數(shù)m的取值范圍。

【答案】(1);(2)

【解析】

(1)利用是偶函數(shù)得到關于對稱,從而,解得a,進而得到解析式.

2)問題轉(zhuǎn)化為方程有三個不同實數(shù)根,令,對求導,研究單調(diào)性及極值,得到大致圖像,由圖可得m的范圍.

(1)由題可知所以函數(shù)的對稱軸為

由于是偶函數(shù),

所以,即關于對稱

所以,即,

所以

(2)方程有三個不同的實數(shù)根,即方程有三個不同實數(shù)根.

,由(1)有

所以,令,則

時,;當時,;當時,

故當時,單調(diào)遞增;當時,單調(diào)遞減;當時,單調(diào)遞增.

所以,當時,取得極大值;當時,取得極小值,

又由于≥0,且當時,;當時,,

其大致圖像:

所以,方程有三個不同實數(shù)根時,m的范圍是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某工廠擬建一座平面圖(如右圖所示)為矩形且面積為200平方米的三級污水處理池,由于地形限制,長、寬都不能超過16米,如果池外周壁建造單價為每米400元,中間兩條隔墻建造單價為每米248元,池底建造單價為每平方米80(池壁厚度忽略不計,且池無蓋)

(1)寫出總造價y()與污水處理池長x()的函數(shù)關系式,并指出其定義域;

(2)求污水處理池的長和寬各為多少時,污水處理池的總造價最低?并求最低總造價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)設,若對任意,均存在使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雙曲線與橢圓有相同的焦點,直線為雙曲線的一條漸近線.

1)求雙曲線的方程;

2)過點的直線交雙曲線、兩點,交軸于點(點與的頂點不重合),當,且,求點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的可導函數(shù)滿足,記的導函數(shù)為,當時恒有.,則m的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,為橢圓的左、右焦點,動點的坐標為,過點的直線與橢圓交于,兩點.

(3)的坐標;

(4)若直線,的斜率之和為0,求的所有整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知以為首項的數(shù)列滿足:

1)當時,求數(shù)列的通項公式;

2)當時,試用表示數(shù)列100項的和

3)當是正整數(shù)),,正整數(shù)時,判斷數(shù)列,,,是否成等比數(shù)列?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)集由實數(shù)構成,且滿足:若),則.

(1)若,試證明中還有另外兩個元素;

(2)集合是否為雙元素集合,并說明理由;

(3)若中元素個數(shù)不超過8個,所有元素的和為,且中有一個元素的平方等于所有元素的積,求集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校共有教職工900人,分成三個批次進行繼續(xù)教育培訓,在三個批次中男、女教職工人數(shù)如下表所示.已知在全體教職工中隨機抽取一名,抽到第二批次中女職工的概率是0.16.

第一批次

第二批次

第三批次

女教職工

196

男教職工

204

156

1)求的值;

2)現(xiàn)用分層抽樣的方法在全體教職工中抽取54名做培訓效果的調(diào)查,問應在第三批次中抽取教職工多少名?

3)已知,求第三批次中女教職工比男教職工多的概率.

查看答案和解析>>

同步練習冊答案