【題目】將函數(shù)y=sin(2x﹣ )的圖象先向左平移 個單位,再將圖象上各點的橫坐標變?yōu)樵瓉淼? 倍(縱坐標不變),那么所得圖象的解析式為y= .
科目:高中數(shù)學 來源: 題型:
【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品所得利潤分別為P和Q(萬元),它們與投入資金m(萬元)的關(guān)系有經(jīng)驗公式P= m+65,Q=76+4 ,今將150萬元資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對甲、乙兩種產(chǎn)品的投資金額不低于25萬元.
(1)設對乙產(chǎn)品投入資金x萬元,求總利潤y(萬元)關(guān)于x的函數(shù)關(guān)系式及其定義域;
(2)如何分配使用資金,才能使所得總利潤最大?最大利潤為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx﹣ )(其中A,ω為常數(shù),且A>0,ω>0)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)若f(α+ )= ,f(β+ )= ,且α,β∈(0, ),求α+β的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C的中心在原點,焦點在x軸上,離心率等于 ,它的一個短軸端點是(0,2 ).
(1)求橢圓C的方程;
(2)P(2,3)、Q(2,﹣3)是橢圓上兩點,A、B是橢圓位于直線PQ兩側(cè)的兩動點,
①若直線AB的斜率為 ,求四邊形APBQ面積的最大值;
②當A、B運動時,滿足∠APQ=∠BPQ,試問直線AB的斜率是否為定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓的中心在原點O,短軸長為 ,左焦點為F(﹣c,0)(c>0),直線 與x軸交于點A,且 ,過點A的直線與橢圓相交于P,Q兩點.
(1)求橢圓的方程.
(2)若 ,求直線PQ的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=f(x),x∈R,對于任意的x,y∈R,f(x+y)=f(x)+f(y),若f(1)= ,則f(﹣2016)= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)定義域為[0,+∞),當x∈[0,1]時,f(x)=sinπx,當x∈[n,n+1]時,f(x)= ,其中n∈N,若函數(shù)f(x)的圖象與直線y=b有且僅有2016個交點,則b的取值范圍是( )
A.(0,1)
B.( , )
C.( , )
D.( , )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com