探究函數(shù)f(x)=x∈(0,+∞)取最小值時x的值,列表如下:

請觀察表中y值隨x值變化的特點,完成以下的問題:

(1)

函數(shù)f(x)=(x>0)在區(qū)間(0,2)上遞減;函數(shù)f(x)=(x>0)在區(qū)間________上遞增.當x=________時,ymin________

(2)

證明:函數(shù)f(x)=(x>0)在區(qū)間(0,2)上遞減.

答案:
解析:

(1)

……………………(4分)

(2)

證明:設(shè)∈(0,2),且

……………………(7分)

∈(0,2),

<0,∈(0,4)

∴f()-f()>0即f()>f()

在區(qū)間(0,2)上遞減……………………(10分)


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:導練必修一數(shù)學蘇教版 蘇教版 題型:044

(探究題)探究函數(shù)f(x)=x+,x∈(0,+∞)的最小值,并確定取得最小值時x的值,列表如下:

?請觀察表中y值隨x值變化的特點,完成以下問題:

(1)函數(shù)f(x)=x+,x∈(0,+∞)在區(qū)間(0,2)上遞減;函數(shù)f(x)=x+,x∈(0,+∞)在區(qū)間________上遞增.當x=________時,ymin=________.

(2)證明函數(shù)f(x)=x+,x∈(0,+∞)在區(qū)間(0,2)上遞減.

查看答案和解析>>

科目:高中數(shù)學 來源:河南省信陽商城高中2010-2011學年高一第一次月考數(shù)學試題 題型:044

我們?yōu)榱颂骄亢瘮?shù)f(x)=x+,x∈(0,+∞)的部分性質(zhì),先列表如下:

請你觀察表中y值隨x值變化的特點,完成以下的問題.

首先比較容易的看出來:此函數(shù)在區(qū)間(0,2)上是遞減的;

(1)函數(shù)f(x)=x+(x>0)在區(qū)間________上遞增.當x=________時,y最小________

(2)請你根據(jù)上面性質(zhì)作出此函數(shù)的大概圖像;

(3)證明:此函數(shù)在區(qū)間上(0,2)是遞減的.

查看答案和解析>>

科目:高中數(shù)學 來源:山西省忻州一中2011-2012學年高一上學期期中考試數(shù)學試題 題型:044

探究函數(shù)f(x)=x+,x∈(0,+∞)的最小值,并確定相應(yīng)的x的值,列表如下:

請觀察表中y值隨x值變化的特點,完成下列問題:

(1)若x1x2=4,則f(x1)________f(x2)(請?zhí)顚憽埃,=,<”?;若函數(shù)f(x)=x+,(x>0)在區(qū)間(0,2)上遞減,則在區(qū)間________上遞增;

(2)當x=________時,f(x)=x+,(x>0)的最小值為________;

(3)試用定義證明f(x)=x+,在區(qū)間(0,2)上單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學 來源:廣西桂林中學2012屆高三11月月考數(shù)學理科試題 題型:044

已知函數(shù)f(x)=(x-1)2,g(x)=4(x-1),數(shù)列{an}滿足a1=2,且(an+1-an)g(an)+f(an)=0.

(1)試探究數(shù)列{an-1}是否是等比數(shù)列?

(2)試證明;

(3)設(shè)bn=3f(an)-g(an+1),試探究數(shù)列{bn}是否存在最大項和最小項?若存在求出

最大項和最小項,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案