如圖,在四棱錐S-ABCD中,側(cè)棱SA=SB=SC=SD,底面ABCD是菱形,AC與BD交于O點(diǎn),
(Ⅰ)求證:AC⊥平面SBD;
(Ⅱ)若E為BC中點(diǎn),點(diǎn)P在側(cè)面△SCD內(nèi)及其邊界上運(yùn)動(dòng),并保持PE⊥AC,試指出動(dòng)點(diǎn)P的軌跡,并證明你的結(jié)論。

(1)證明:∵底面ABCD是菱形,O為中心,
∴AC⊥BD,
又SA=SC,
∴AC⊥SO,而SO∩BD=O,
∴AC⊥面SBD;
(2)解:取棱SC的中點(diǎn)M,CD的中點(diǎn)N,連結(jié)MN,則動(dòng)點(diǎn)P的軌跡即是線段MN;
證明:連結(jié)EM、EN,
∵E是BC的中點(diǎn),M是SC的中點(diǎn),
∴EM∥SB,同理,EN∥BD,
∴平面EMN∥平面SBD,
∵AC⊥平面SBD,
∴AC⊥平面EMN,
因此,當(dāng)點(diǎn)P在線段MN上運(yùn)動(dòng)時(shí),總有AC⊥EP;
P點(diǎn)不在線段MN上時(shí),不可能有AC⊥EP。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在四棱錐S-ABCD中,AD∥BC且AD⊥CD;平面CSD⊥平面ABCD,CS⊥DS,CS=2AD=2;E為BS的中點(diǎn),CE=
2
,AS=
3
,求:
(Ⅰ)點(diǎn)A到平面BCS的距離;
(Ⅱ)二面角E-CD-A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在四棱錐S-ABCD中,底面ABCD為正方形,側(cè)棱SD⊥底面ABCD,E、F分別是AB、SC的中點(diǎn)
(1)求證:EF∥平面SAD
(2)設(shè)SD=2CD,求二面角A-EF-D的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在四棱錐S-ABCD中,SA⊥底面ABCD,∠BAD=∠ABC=90°,SA=AB=AD=
1
3
BC=1
,E為SD的中點(diǎn).
(1)若F為底面BC邊上的一點(diǎn),且BF=
1
6
BC
,求證:EF∥平面SAB;
(2)底面BC邊上是否存在一點(diǎn)G,使得二面角S-DG-A的正切值為
2
?若存在,求出G點(diǎn)位置;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐S-ABCD中,底面ABCD為正方形,側(cè)棱SD⊥底面ABCD,E,F(xiàn)分別為AB,SC的中點(diǎn).
(1)證明EF∥平面SAD;
(2)設(shè)SD=2DC,求二面角A-EF-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐S-ABCD中,平面SAD⊥平面ABCD.底面ABCD為矩形,AD=
2
a,AB=
3
a
,SA=SD=a.
(Ⅰ)求證:CD⊥SA;
(Ⅱ)求二面角C-SA-D的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案