【題目】已知{an}是等比數(shù)列,an>0,a3=12,且a2 , a4 , a2+36成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè){bn}是等差數(shù)列,且b3=a3 , b9=a5 , 求b3+b5+b7+…+b2n+1 .
【答案】
(1)解:設(shè)等比數(shù)列{an}的公比為q,
∵an>0,可得q>0.
∵a2,a4,a2+36成等差數(shù)列.∴2a4=a2+a2+36,
∴2a3q=2 +36,即2×12q=2× +36,化為:2q2﹣3q﹣2=0,
解得q=2.
∴ =12,解得a1=3.
∴an=3×2n﹣1.
(2)解:由(1)可得:
b3=a3=12,b9=a5=3×24=48.
設(shè)等差數(shù)列{bn}的公差為d,則b1+2d=12,b1+8d=48,
解得b1=0,d=6.
∴bn=6(n﹣1).
∴b2n+1=12n.
∴b3+b5+b7+…+b2n+1=12× =6n2+6n
【解析】(1)利用等差數(shù)列與等比數(shù)列的通項公式即可得出.(2)利用等比數(shù)列與等差數(shù)列的通項公式、求和公式即可得出.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù) 圖象上所有點的橫坐標(biāo)縮短為原來的 ,縱坐標(biāo)不變,再向右平移 個單位長度,得到函數(shù)y=g(x)的圖象,則下列說法正確的是( )
A.函數(shù)g(x)的一條對稱軸是
B.函數(shù)g(x)的一個對稱中心是
C.函數(shù)g(x)的一條對稱軸是
D.函數(shù)g(x)的一個對稱中心是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=9x﹣2a3x+3:
(1)若a=1,x∈[0,1]時,求f(x)的值域;
(2)當(dāng)x∈[﹣1,1]時,求f(x)的最小值h(a);
(3)是否存在實數(shù)m、n,同時滿足下列條件:①n>m>3;②當(dāng)h(a)的定義域為[m,n]時,其值域為[m2 , n2],若存在,求出m、n的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四面體ABCD的頂點都在同一個球的球面上,BC= ,BD=4,且滿足BC⊥BD,AC⊥BC,AD⊥BD.若該三棱錐的體積為 ,則該球的球面面積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《周髀算經(jīng)》中給出了弦圖,所謂弦圖是由四個全等的直角三角形和中間一個小正方形拼成一個大的正方形,若圖中直角三角形兩銳角分別為α、β,且小正方形與大正方形面積之比為4:9,則cos(α﹣β)的值為( )
A.
B.
C.
D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (θ為參數(shù)),在以O(shè)為極點,x軸的正半軸為極軸的極坐標(biāo)系中,直線l: (m為常數(shù)).
(1)求曲線C的普通方程與直線l的直角坐標(biāo)方程;
(2)若直線l與曲線C相交于A、B兩點,當(dāng)|AB|=4時,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為2的正方形ABCD沿對角線BD折疊,使得平面ABD丄平面CBD,若AM丄平面ABD,且AM=
(1)求證:DM⊥平面ABC;
(2)求二面角C﹣BM﹣D的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x﹣2)2+(y﹣1)2=1,點P為直線x+2y﹣9=0上一動點,過點P向圓C引兩條切線PA,PB,其中A,B為切點,則 的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形ABEF所在的平面與△ABC所在的平面相互垂直,AB=4,BC= ,BC⊥BE,∠ABE= .
(1)求證:BC⊥平面ABEF;
(2)求平面ACF與平面BCE所成的銳二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com