已知平面直角坐標(biāo)系內(nèi)的兩個(gè)向量數(shù)學(xué)公式=(1,2),數(shù)學(xué)公式=(m,3m-2),且平面內(nèi)的任一向量數(shù)學(xué)公式都可以唯一的表示成數(shù)學(xué)公式數(shù)學(xué)公式數(shù)學(xué)公式(λ,μ為實(shí)數(shù)),則m的取值范圍是


  1. A.
    (-∞,2)
  2. B.
    (2,+∞)
  3. C.
    (-∞,+∞)
  4. D.
    (-∞,2)∪(2,+∞)
D
分析:平面向量基本定理:若平面內(nèi)兩個(gè)向量、不共線,則平面內(nèi)的任一向量都可以用向量、來(lái)線性表示,即存在唯一的實(shí)數(shù)對(duì)λ、μ,使成立.根據(jù)此理論,結(jié)合已知條件,只需向量不共線即可,因此不難求出實(shí)數(shù)m的取值范圍.
解答:根據(jù)題意,向量、是不共線的向量
=(1,2),=(m,3m-2)
由向量、不共線?
解之得m≠2
所以實(shí)數(shù)m的取值范圍是{m|m∈R且m≠2}.
故選D
點(diǎn)評(píng):本題考查了平面向量坐標(biāo)表示的應(yīng)用,著重考查了平面向量基本定理、向量共線的充要條件等知識(shí)點(diǎn),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面直角坐標(biāo)系內(nèi)的點(diǎn)A(1,1),B(2,4),C(-1,3),則|
AB
-
AC
|
=( 。
A、2
2
B、
10
C、8
D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面直角坐標(biāo)系內(nèi)三點(diǎn)O(0,0),A(1,1),B(4,2)
(Ⅰ)求過(guò)O,A,B三點(diǎn)的圓的方程,并指出圓心坐標(biāo)與圓的半徑.
(Ⅱ)求過(guò)點(diǎn)C(-1,0)與條件(Ⅰ)的圓相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面直角坐標(biāo)系內(nèi)的點(diǎn)A(1,1),B(2,4),C(-1,3),
AB
AC
的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面直角坐標(biāo)系內(nèi)有三點(diǎn)A(sinx,1),B(cosx,2a),C(a,1),x∈[-
π
4
, 
4
]
,若函數(shù)f(x)=
AC
BC
的最大值為g(a),求函數(shù)g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面直角坐標(biāo)系內(nèi)的兩個(gè)向量
a
=(1,2),
b
=(m,3m-2),且平面內(nèi)的任一向量
c
都可以唯一的表示成
c
a
b
(λ,μ為實(shí)數(shù)),則m的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案