已知關于x的一元二次函數(shù)f(x)=ax2-bx+1,設集合P={1,2,3},Q={-1,1,2,3,4},分別從集合P和Q中隨機取一個數(shù)作為a和b.
(1)求函數(shù)y=f(x)有零點的概率;
(2)求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.
分析:利用乘法原理可求出基本事件的總數(shù).(1)利用一元二次方程有實數(shù)根(函數(shù)有零點)的充要條件即可得出所包括基本事件的個數(shù);
(2)利用二次函數(shù)的單調性即可得出所包括的基本事件的個數(shù).
解答:解:(a,b)共有(1,-1),(1,1),(1,2),(1,3),(1,4),(2,-1),(2,1),(2,2),(2,3),(2,4),(3,-1),(3,1),(3,2),(3,3),(3,4)15種情況.
(1)滿足△=b2-4a≥0,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6種情況.
∴函數(shù)y=f(x)有零點的概率P=
6
15
=
2
5

(2)二次函數(shù)f(x)=ax2-bx+1的對稱軸x=
b
2a

∵函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù),∴
b
2a
≤1
,
有(1,-1),(1,1),(1,2),(2,-1),(2,1),(2,2),(2,30,(2,4),(3,-1),(3,-1),(3,2),
(3,3),(3,4),共13種情況.
∴函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率P=
13
15
點評:爽了掌握乘法原理、一元二次方程有實數(shù)根(函數(shù)有零點)的充要條件、二次函數(shù)的單調性、古典概型的計算公式是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知關于x的一元二次函數(shù)f(x)=ax2-4bx+1.
(1)設集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機取一個數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率;
(2)設點(a,b)是區(qū)域
x+y-8≤0
x>0
y>0
內(nèi)的隨機點,求y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)在一個紅綠燈路口,紅燈、黃燈和綠燈的時間分別為30秒、5秒和40秒.當你到達路口時,求不是紅燈的概率.
(2)已知關于x的一元二次函數(shù)f(x)=ax2-4bx+1.設集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機取一個數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的一元二次函數(shù)f(x)=ax2-4bx+1.
(Ⅰ)設集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機取一個數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[|m+n|2上是增函數(shù)的概率;
(Ⅱ)設點(
1
2
|m+n|min=
2
2
)是區(qū)域
x+y-8≤0
x>0
y>0
內(nèi)的隨機點,求MD上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的一元二次不等式ax2+bx+c>0的解集為(-2,3),則關于x的不等式cx+b
x
+a<0的解集為
[0,
1
9
[0,
1
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•藍山縣模擬)已知關于x的一元二次不等式ax2+bx+c≥0在實數(shù)集上恒成立,且a<b,則T=
a+b+cb-a
的最小值為
3
3

查看答案和解析>>

同步練習冊答案