(本題滿分14分)

已知函數(shù),

(Ⅰ)當時,若上單調(diào)遞增,求的取值范圍;

(Ⅱ)求滿足下列條件的所有實數(shù)對:當是整數(shù)時,存在,使得的最大值,的最小值;

(Ⅲ)對滿足(Ⅱ)的條件的一個實數(shù)對,試構(gòu)造一個定義在,且上的函數(shù),使當時,,當時,取得最大值的自變量的值構(gòu)成以為首項的等差數(shù)列。

 

【答案】

解:(Ⅰ)當時,,

,,則上單調(diào)遞減,不符題意。

,要使上單調(diào)遞增,必須滿足 ,

。  (4分)

(Ⅱ)若,,則無最大值,故

為二次函數(shù),

要使有最大值,必須滿足,即

此時,時,有最大值。

取最小值時,,依題意,有,

,

,∴,得,此時。

∴滿足條件的實數(shù)對。   (9分)            

(Ⅲ)當實數(shù)對時,         (14分)   

依題意,只需構(gòu)造以2(或2的正整數(shù)倍)為周期的周期函數(shù)即可。

如對,

此時,,

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(本題滿分14分
A.選修4-4:極坐標與參數(shù)方程在極坐標系中,直線l 的極坐標方程為θ=
π
3
(ρ∈R ),以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,曲線C的參數(shù)方程為
x=2cosα
y=1+cos2α
(α 參數(shù)).求直線l 和曲線C的交點P的直角坐標.
B.選修4-5:不等式選講
設(shè)實數(shù)x,y,z 滿足x+y+2z=6,求x2+y2+z2 的最小值,并求此時x,y,z 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABEAEEBBC=2,上的點,且BF⊥平面ACE

(1)求證:AEBE;(2)求三棱錐DAEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省高三上學期期中考試數(shù)學 題型:解答題

(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求實數(shù)m的值

(Ⅱ)若ACRB,求實數(shù)m的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年福建省高三上學期第三次月考理科數(shù)學卷 題型:解答題

(本題滿分14分)

已知點是⊙上的任意一點,過垂直軸于,動點滿足

(1)求動點的軌跡方程; 

(2)已知點,在動點的軌跡上是否存在兩個不重合的兩點、,使 (O是坐標原點),若存在,求出直線的方程,若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆江西省高一第二學期入學考試數(shù)學 題型:解答題

(本題滿分14分)已知函數(shù).

(1)求函數(shù)的定義域;

(2)判斷的奇偶性;

(3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使

;如果沒有,請說明理由?(注:區(qū)間的長度為).

 

查看答案和解析>>

同步練習冊答案