(本小題滿分12分)
在直角坐標
系
中,以
為極點,
正半軸為極軸建立極坐標系,曲線
的極坐標方程為
,
分別為
與
軸,
軸的交點。曲線
的參數(shù)方程為
(
為參數(shù))。
(1)求
的極坐標,并寫出
的直角坐標
方程;
(2)求
點與曲線
上的動點距離的最大值。
解:(1)當
時,
,所以
點的極坐標為
,
當
時,
,所以
點的極坐標為
。
由
,可得
,
因為
,所以有
所以
的直角坐標方程為
。
(2)設(shè)曲線
上的動點為
,則
,
當
時
的最大值為
,故
點與曲線
上的動點距離的最大值為
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分10分)選修4—4:坐標系與參數(shù)方程。平面直角坐標系中,直線
的參數(shù)方程是
(
為參數(shù)),以坐標原點為極點,
軸的正半軸為極軸,建立極坐
標系,已知曲線
的極坐標方程為
.
(Ⅰ)求直線
的極坐標方程;
(Ⅱ)若直線
與曲線
相交于
、
兩點,求
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
.選修4—4:坐標系與參數(shù)方程
以平面直角坐標系
的原點
為極點,
軸的正半軸為極軸建立極坐標系,直線
的極坐標方程為
,曲線
的參數(shù)方程為
(1)若把曲線
上的橫坐標縮短為原來的
,縱坐標不變,得到曲線
,
求曲線
在直角坐標系下的方程
(2)在第(1)問的條件下,判斷曲線
與直線
的位置關(guān)系,并說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
平面直角坐標系中,點集M=
,則點集M所覆蓋的平面圖形的面積為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
把圓的參數(shù)方程
化成普通方程的標準形式是_______________
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
(極坐標與參數(shù)方程選做題)在平面直角坐標系
中,曲線
的參數(shù)方程為
(
為參數(shù),
).若以
為極點,以
軸正半軸為極軸建
立極坐標系,則曲線
的極坐標方程為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
直線l:y=3x+2與圓:
(
為參數(shù))的位置關(guān)系是( )
A.相交且過圓心 | B.相交而不過圓心 | C.相切 | D.相離 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(選修4-4:坐標系與參數(shù)方程)
已知直線
過點
,且傾斜角為
,圓方程為
。
(1)求直線
的參數(shù)方程;(2)設(shè)直線
與圓交與M、N兩點,求
的值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
附加題) 已知
的極坐標方程分別是
(a是常數(shù)).
(1)分別將兩個圓的極坐標方程化為直角坐標方程;
(2)若兩個圓的圓心距為
的值。
查看答案和解析>>