對(duì)于,記,若函數(shù),其中,則的最小值為      

 

【答案】

【解析】,所以f(x)的最小值為

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)對(duì)于任意的實(shí)數(shù)a,b,記max{a,b}=
a(a≥b)
b(a<b)
.若F(x)=max{f(x),g(x)}(x∈R),其中函數(shù)  y=f(x)(x∈R)是奇函數(shù),且當(dāng)x≥0時(shí),f(x)=(x-1)2-2;函數(shù)y=g(x)(x∈R)是正比例函數(shù),其圖象與x≥0時(shí)函數(shù)y=f(x)的圖象如圖所示,則下列關(guān)于函數(shù)y=F(x)的說法中,正確的是( 。
A、y=F(x)為奇函數(shù)
B、y=F(x)在(-3,0)上為增函數(shù)
C、y=F(x)的最小值為-2,最大值為2
D、以上說法都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于任意的實(shí)數(shù)a、b,記max{a,b}=
a(a≥b)
b(a<b)
.若F(x)=max{f(x),g(x)}(x∈R),其中函數(shù)y=f(x)(x∈R)是奇函數(shù),且在x=1處取得極小值-2,函數(shù)y=g(x) (x∈R)是正比例函數(shù),其圖象與x≥0時(shí)的函數(shù)y=f(x)的圖象如圖所示,則下列關(guān)于函數(shù)y=F(x)的說法中,正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)已知函數(shù)f(x)=x3-x,其圖象記為曲線C.
(i)求函數(shù)f(x)的單調(diào)區(qū)間;
(ii)證明:若對(duì)于任意非零實(shí)數(shù)x1,曲線C與其在點(diǎn)P1(x1,f(x1))處的切線交于另一點(diǎn)P2(x2,f(x2)),曲線C與其在點(diǎn)P2(x2,f(x2))處的切線交于另一點(diǎn)P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積記為S1,S2.則
S1S2
為定值;
(Ⅱ)對(duì)于一般的三次函數(shù)g(x)=ax3+bx2+cx+d(a≠0),請(qǐng)給出類似于(Ⅰ)(ii)的正確命題,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年海淀區(qū)期中文)(14分)

       設(shè)是定義在D上的函數(shù),若對(duì)D中的任意兩個(gè)實(shí)數(shù),恒有,則稱為定義在D上的T函數(shù)。

   (I)試判斷函數(shù)是否為其定義域上的T函數(shù), 并說明理由;

   (II)若函數(shù)是R上的奇函數(shù),試證明不是R上的T函數(shù);

   (III)若對(duì)任何實(shí)數(shù)以及D中的任意兩個(gè)實(shí)數(shù)恒有

        ,則稱為定義在D上的C函數(shù)。已知是R上的C函數(shù),m是給定在正整數(shù),設(shè),且。對(duì)于滿足條件的任意函數(shù),試求的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年遼寧省高二下學(xué)期期末考試數(shù)學(xué)理科 題型:解答題

(本小題滿分12分)已知函數(shù),其圖像記為,若對(duì)于任意非零實(shí)數(shù),曲線與其在點(diǎn)處的切線交于另一點(diǎn),曲線與其在點(diǎn)處的切線交于另一點(diǎn),線段,與曲線所圍成封閉圖形的面積分別記為,求證:為定值;

 

查看答案和解析>>

同步練習(xí)冊(cè)答案