【題目】已知點(diǎn)為拋物線:的焦點(diǎn),點(diǎn)在拋物線上,且到原點(diǎn)的距離為.
(1)求拋物線的方程;
(2)已知點(diǎn),延長交拋物線于點(diǎn),證明:以點(diǎn)為圓心且與直線相切的圓,必與直線相切.
【答案】(1);(2)證明見解析.
【解析】
試題分析:(1)由點(diǎn)到直線距離公式求出的值,在代入可求得,進(jìn)而得拋物線的方程;(2)由(1)知點(diǎn)的坐標(biāo),可得直線的方程為,與拋物線方程聯(lián)立可求出,進(jìn)而可得直線的方程及直線的方程,只需證明到直線、距離相等即可.
試題解析:(1)由題意可得:,
解得,
所以拋物線的方程為.
(2)設(shè)以點(diǎn)為圓心且與直線相切的圓的半徑為.
因?yàn)辄c(diǎn)在拋物線上,
所以,
由拋物線的對稱性,不妨設(shè).
由,可得直線的方程為.
由,得,
解得或,從而.
又,
故直線的方程為,
從而.
又直線的方程為,
所以點(diǎn)到直線的距離為.
這表明以點(diǎn)為圓心且與直線相切的圓必與直線相切.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把10個相同的小球分成三堆,要求每一堆至少有1個,至多5個,則不同的方法共有
A. 6種 B. 5種 C. 4種 D. 3種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個幾何體的三視圖如圖所示,已知正(主)視圖是底邊長為1的平行四邊形,側(cè)(左)視圖是一個長為,寬為1的矩形,俯視圖為兩個邊長為1的正方形拼成的矩形.
(1)求該幾何體的體積;
(2)求該幾何體的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題:
①函數(shù)與函數(shù)表示同一個函數(shù);
②奇函數(shù)的圖像一定通過直角坐標(biāo)系的原點(diǎn);
③函數(shù)的圖像可由的圖像向右平移1個單位得到;
④的最小值為1
⑤對于函數(shù)f(x),若f(-1)f(3)<0,則方程在區(qū)間[-1,3]上有一實(shí)根;
其中正確命題的序號是 .(填上所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解甲、乙兩名同學(xué)的數(shù)學(xué)學(xué)習(xí)情況,對他們的次數(shù)學(xué)測試成績(滿分分)進(jìn)行統(tǒng)計,作出如下的莖葉圖,其中處的數(shù)字模糊不清,已知甲同學(xué)成績的中位數(shù)是,乙同學(xué)成績的平均分是分.
(1)求和的值;
(2)現(xiàn)從成績在之間的試卷中隨機(jī)抽取兩份進(jìn)行分析,求恰抽到一份甲同學(xué)試卷的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是( )
A. 平行于同一個平面的兩個平面平行
B. 平行于同一直線的兩個平面平行
C. 垂直于同一個平面的兩條直線平行
D. 垂直于同一條直線的兩個平面平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)一種產(chǎn)品,每年需投入固定成本25萬元,此外每生產(chǎn)1件這樣的產(chǎn)品,還需增加投入0.5萬元,經(jīng)市場調(diào)查知這種產(chǎn)品年需求量為500件,產(chǎn)品銷售數(shù)量為t件時,銷售所得的收入為萬元.
(1)該公司這種產(chǎn)品的年生產(chǎn)量為x件,生產(chǎn)并銷售這種產(chǎn)品所得到的利潤關(guān)于當(dāng)年產(chǎn)量x的函數(shù)為f(x),求f(x);
(2)當(dāng)該公司的年產(chǎn)量為多少件時,當(dāng)年所獲得的利潤最大
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)證明:當(dāng)時,函數(shù)沒有零點(diǎn)(提示:)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com