已知f(x)=,a,b∈R,A=f(),G=f(),H=f(),則A、G、H的大小關系是
[     ]
A.A≤G≤H
B.A≤H≤G
C.G≤H≤A
D.H≤G≤A
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=x2+(a+1)x+lg|a+2|(a≠-2,a∈R),
(Ⅰ)若f(x)能表示成一個奇函數(shù)g(x)和一個偶函數(shù)h(x)的和,求g(x)和h(x)的解析式;
(Ⅱ)若f(x)和g(x)在區(qū)間(-∞,(a+1)2]上都是減函數(shù),求a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,比較f(1)和
16
的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=2x3-6x2+a(a為常數(shù))在[-2,2]上有最大值3,那么此函數(shù)在[-2,2]上的值域是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax2(a∈R),g(x)=2lnx.
(1)討論函數(shù)F(x)=f(x)-g(x)的單調性;
(2)是否存在這樣的a的值,使得f(x)≥g(x)+2(x∈R*)恒成立,若不存在,請說明理由;若存在,求出所有這樣的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=2cos2
wx
2
+
3
sinwx+a的圖象上相鄰兩對稱軸的距離為
π
2

(1)若x∈R,求f(x)的遞增區(qū)間;
(2)若x∈[0,
π
2
]時,f(x)的最大值為4,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=logax(a>0且a≠1),如果對任意的x∈[
13
,2]
,都有|f(x)|≤1成立,試求a的取值范圍.

查看答案和解析>>

同步練習冊答案