(2012•宿州一模)已知斜率為1的直線(xiàn)l與雙曲線(xiàn)C:
x2
a2
-
y2
b2
=1(a>0,b>0)
相交于B、D兩點(diǎn),且BD的中點(diǎn)為M(1,3).
(1)求雙曲線(xiàn)C的離心率;
(2)若雙曲線(xiàn)C的右焦點(diǎn)坐標(biāo)為(3,0),則以雙曲線(xiàn)的焦點(diǎn)為焦點(diǎn),過(guò)直線(xiàn)g:x-y+9=0上一點(diǎn)M作橢圓,要使所作橢圓的長(zhǎng)軸最短,點(diǎn)M應(yīng)在何處?并求出此時(shí)的橢圓方程.
分析:(Ⅰ)由題設(shè)知:l的方程為y=x+2,代入雙曲線(xiàn)C:
x2
a2
-
y2
b2
=1(a>0,b>0)
,得:(b2-a2)x2-4a2x-4a2-a2b2=0,設(shè)B(x1,y1),D(x2,y2),則x1+x2=
4a2
b2-a2
x1x2=-
4a2+a2b2
b2-a2
,由M(1,3)為BD的中點(diǎn),知
4a2
b2-a2
=2
,由此能求出雙曲線(xiàn)C的離心率.
(Ⅱ)雙曲線(xiàn)的左、右焦點(diǎn)為F1(-3,0),F(xiàn)2(3,0),點(diǎn)F1關(guān)于直線(xiàn)g:x-y+9=0的對(duì)稱(chēng)點(diǎn)F的坐標(biāo)為(-9,6),直線(xiàn)FF2的方程為x+2y-3=0,故交點(diǎn)M(-5,4).由此能求出橢圓的方程.
解答:(本小題滿(mǎn)分12分)
解:(Ⅰ)由題設(shè)知:l的方程為y=x+2,代入雙曲線(xiàn)C:
x2
a2
-
y2
b2
=1(a>0,b>0)
,并化簡(jiǎn)得:
(b2-a2)x2-4a2x-4a2-a2b2=0,(*)…(2分)
設(shè)B(x1,y1),D(x2,y2),則x1+x2=
4a2
b2-a2
,x1x2=-
4a2+a2b2
b2-a2
,…(4分)
由M(1,3)為BD的中點(diǎn),知
x1+x2
2
=1
,故
4a2
b2-a2
=2

即b2=3a2.故c=2a,∴e=2.…(6分)
(Ⅱ)雙曲線(xiàn)的左、右焦點(diǎn)為F1(-3,0),F(xiàn)2(3,0),點(diǎn)F1關(guān)于直線(xiàn)g:x-y+9=0①
的對(duì)稱(chēng)點(diǎn)F的坐標(biāo)為(-9,6),直線(xiàn)FF2的方程為x+2y-3=0,②…(8分)
解方程組①②得:交點(diǎn)M(-5,4),…(9分)
此時(shí)|MF1|+|MF2|最小,所求橢圓的長(zhǎng)軸2a=|MF1| +|MF2| =|FF2| =6
5
,
∴a=3
5
,…(11分)
∵c=3,∴b2=36,故所求橢圓的方程為
x2
45
+
y2
36
=1
.…(12分)
點(diǎn)評(píng):本題考查雙曲線(xiàn)的離心率的求法,考查橢圓方程的求法,具有一定的探索性.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•宿州一模)函數(shù)y=3x-
2
x
+1,x∈[-1,0)∪(0,1]
,則y的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•宿州一模)函數(shù)f(x)的定義域?yàn)锳,若x1,x2∈A且當(dāng)f(x1)=f(x2)時(shí),總有x1=x2,則稱(chēng)f(x)為單函數(shù).例如,函數(shù)f(x)=2x+1(x∈R)是單函數(shù).下列命題:
①函數(shù)f(x)=x2(x∈R)是單函數(shù);
②若f(x)為單函數(shù),x1,x2∈A且x1≠x2,則f(x1)≠f(x2);
③若f:A→B為單函數(shù),則對(duì)于任意b∈B,它至多有一個(gè)原象;
④函數(shù)f(x)在A上具有單調(diào)性,則f(x)一定是單函數(shù).
其中為真命題的是
②③④
②③④
.(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•宿州一模)已知實(shí)數(shù)x,y滿(mǎn)足-1<x+y<4且2<x-y<3,則z=2x-3y可能取到的值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•宿州一模)如圖,在底面是直角梯形的四棱錐P-ABCD中,∠DAB=90°,PA⊥平面ABCD,PA=AB=BC=3,梯形上底AD=1.
(1)求證:BC⊥平面PAB;
(2)求面PCD與面PAB所成銳二面角的正切值;
(3)在PC上是否存在一點(diǎn)E,使得DE∥平面PAB?若存在,請(qǐng)找出;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案