【題目】在平面直角坐標(biāo)系中,曲線(為參數(shù),實(shí)數(shù)),曲線(為參數(shù),實(shí)數(shù)).在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,射線與交于,兩點(diǎn),與交于,兩點(diǎn).當(dāng)時(shí),;當(dāng),.
(1)求和的值.
(2)求的最大值.
【答案】(1),(2)
【解析】
(Ⅰ)由曲線消去參數(shù),得到曲線的普通方程,再由極坐標(biāo)方程與直角的互化公式,得到曲線的極坐標(biāo)方程,由題意可得當(dāng)時(shí),得,當(dāng)時(shí),.
(Ⅱ)由(Ⅰ)可得,的極坐標(biāo)方程,進(jìn)而得到的表達(dá)式,利用三角函數(shù)的性質(zhì),即可求解.
(Ⅰ)由曲線:(為參數(shù),實(shí)數(shù)),
化為普通方程為,展開為:,
其極坐標(biāo)方程為,即,由題意可得當(dāng)時(shí),,∴.
曲線:(為參數(shù),實(shí)數(shù)),
化為普通方程為,展開可得極坐標(biāo)方程為,
由題意可得當(dāng)時(shí),,∴.
(Ⅱ)由(Ⅰ)可得,的極坐標(biāo)方程分別為,.
∴
,
∵,∴的最大值為,
當(dāng),時(shí)取到最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:曲線表示雙曲線;:曲線表示焦點(diǎn)在軸上的橢圓.
(1)分別求出條件中的實(shí)數(shù)的取值范圍;
(2)甲同學(xué)認(rèn)為“是的充分條件”,乙同學(xué)認(rèn)為“是的必要條件”,請(qǐng)判斷兩位同學(xué)的說法是否正確,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱中,,是中點(diǎn).
證明:平面;
線段上是否存在點(diǎn),使三棱錐的體積為?若存在,確定點(diǎn)的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)若函數(shù)存在5個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】今有9所省級(jí)示范學(xué)校參加聯(lián)考,參加人數(shù)約5000人,考完后經(jīng)計(jì)算得數(shù)學(xué)平均分為113分.已知本次聯(lián)考的成績(jī)服從正態(tài)分布,且標(biāo)準(zhǔn)差為12.
(1)計(jì)算聯(lián)考成績(jī)?cè)?37分以上的人數(shù).
(2)從所有試卷中任意抽取1份,已知分?jǐn)?shù)不超過123分的概率為0.8.
①求分?jǐn)?shù)低于103分的概率.
②從所有試卷中任意抽取5份,由于試卷數(shù)量較大,可以把每份試卷被抽到的概率視為相同,表示抽到成績(jī)低于103分的試卷的份數(shù),寫出的分布列,并求出數(shù)學(xué)期望.
參考數(shù)據(jù):
,,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表是某電器銷售公司2018年度各類電器營(yíng)業(yè)收入占比和凈利潤(rùn)占比統(tǒng)計(jì)表:
空調(diào)類 | 冰箱類 | 小家電類 | 其它類 | |
營(yíng)業(yè)收入占比 | ||||
凈利潤(rùn)占比 |
則下列判斷中不正確的是( )
A. 該公司2018年度冰箱類電器營(yíng)銷虧損
B. 該公司2018年度小家電類電器營(yíng)業(yè)收入和凈利潤(rùn)相同
C. 該公司2018年度凈利潤(rùn)主要由空調(diào)類電器銷售提供
D. 剔除冰箱類電器銷售數(shù)據(jù)后,該公司2018年度空調(diào)類電器銷售凈利潤(rùn)占比將會(huì)降低
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】利用獨(dú)立性檢驗(yàn)的方法調(diào)查大學(xué)生的性別與愛好某項(xiàng)運(yùn)動(dòng)是否有關(guān),通過隨機(jī)詢問110名不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),利用列聯(lián)表,由計(jì)算可得
P(K2>k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參照附表,得到的正確結(jié)論是( )
A.有99.5%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
B.有99.5%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
C.在犯錯(cuò)誤的概率不超過0.05%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D.在犯錯(cuò)誤的概率不超過0.05%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,底面ABC,是邊長(zhǎng)為2的正三角形,,E,F分別為BC,的中點(diǎn).
1求證:平面平面;
2求三棱錐的體積;
3在線段上是否存在一點(diǎn)M,使直線MF與平面沒有公共點(diǎn)?若存在,求的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線平面,直線平行四邊形,四棱錐的頂點(diǎn)在平面上,,,,,分別是與的中點(diǎn).
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com