如圖,圓O為單位圓,A(1,0),數(shù)學公式,數(shù)學公式數(shù)學公式,E(0,1),數(shù)學公式為圓O上的定點,點M為圓O上的動點.M第一次由點A按逆時針方向運動到某定點,所形成的角為α;M第二次由點A按逆時針方向運動到某定點,所形成的角為β.
(Ⅰ) 當點M第一次由點A按逆時針方向運動到定點C,第二次由點A按逆時針方向運動到定點D時,求cos(α-β)的值;
(Ⅱ)在A、B、C、D、E、F中是否存在兩個點,能使角α,β同時滿足數(shù)學公式,且數(shù)學公式.若不存在,說明理由; 若存在,找出定點并證明.

解:(Ⅰ)當點M第一次由點A按逆時針方向運動到定點C時,所形成的角為α=,
第二次由點A按逆時針方向運動到定點D時,所形成的角為β=,
則cos(α-β)=cos
=cos(-)=coscos+sinsin=;
(Ⅱ)存在,當點M第一次由點A按逆時針方向運動到定點B,
第二次由點A按逆時針方向運動到定點F時,角α=,β=,滿足題意,
理由如下:
,得到+β=
,
∴tan(+β)===-1,
∴tan+tanβ=2-2,
∴tan=-,tanβ=2-或tan=2-,tanβ=-,
=,β=,不滿足題意;
=,即α=,β=時,滿足題意,
則M第一次由點A按逆時針方向運動到某定點B,
第二次由點A按逆時針方向運動到定點F時滿足題意.
分析:(Ⅰ)根據(jù)C的坐標及C在第一象限,得到tanα的值,利用特殊角的三角函數(shù)值求出C的度數(shù),即為α的度數(shù);同理根據(jù)D的坐標,及第二次由點A按逆時針方向運動到某定點D,得到β的度數(shù),代入cos(α-β),把角變形為-,利用兩角和與差的余弦函數(shù)公式及特殊角的三角函數(shù)值即可求出值;
(Ⅱ)存在兩點B和F,滿足題意,理由為:由已知的α+2β的度數(shù)求出的度數(shù),然后利用兩角和與差的正切函數(shù)公式及特殊角的三角函數(shù)值化簡tan(),把的值及的度數(shù)代入,求出的值,兩者聯(lián)立分別求出的值,根據(jù)特殊角的三角函數(shù)值即可得到α,β的度數(shù),進而找出對應(yīng)的點.
點評:此題考查了三角函數(shù)恒等式的證明,涉及的知識有兩角和與差的正切、余弦函數(shù)公式,點與坐標系,銳角三角函數(shù)定義,以及特殊角的三角函數(shù)值,熟練掌握公式是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,設(shè)P是單位圓和x軸正半軸的交點,M、N是單位圓上的兩點,O是坐標原點,∠POM=
π
3
,∠PON=α,α∈[0,π],f(α)=|
OM
+
ON
|
,則f(a)的范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖A,B是單位圓O上的點,且A,B分別在第一,二象限.C是圓與x軸正半軸的交點,△AOB為正三角形.若A點的坐標為(
3
5
,
4
5
).記∠COA=α.
(Ⅰ)求
sin2α+sin2α
cos2α+cos2α
的值;
(Ⅱ)求cos∠COB的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

[選做題]在A、B、C、D四小題中只能選做2題,每小題10分,計20分.請把答案寫在答題紙的指定區(qū)域內(nèi).
A.(選修4-1:幾何證明選講)
如圖,圓O的直徑AB=8,C為圓周上一點,BC=4,過C作圓的切線l,過A作直線l的垂線AD,D為垂足,AD與圓O交于點E,求線段AE的長.
B.(選修4-2:矩陣與變換)
已知二階矩陣A有特征值λ1=3及其對應(yīng)的一個特征向量α1=
1
1
,特征值λ2=-1及其對應(yīng)的一個特征向量α2=
1
-1
,求矩陣A的逆矩陣A-1
C.(選修4-4:坐標系與參數(shù)方程)
以平面直角坐標系的原點O為極點,x軸的正半軸為極軸,建立極坐標系(兩種坐標系中取相同的單位長度),已知點A的直角坐標為(-2,6),點B的極坐標為(4,
π
2
)
,直線l過點A且傾斜角為
π
4
,圓C以點B為圓心,4為半徑,試求直線l的參數(shù)方程和圓C的極坐標方程.
D.(選修4-5:不等式選講)
設(shè)a,b,c,d都是正數(shù),且x=
a2+b2
y=
c2+d2
.求證:xy≥
(ac+bd)(ad+bc)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,圓O為單位圓,A(1,0),B(
3
2
1
2
)
,C(
2
2
,
2
2
)
D(
1
2
,
3
2
)
,E(0,1),F(-
1
2
,
3
2
)
為圓O上的定點,點M為圓O上的動點.M第一次由點A按逆時針方向運動到某定點,所形成的角為α;M第二次由點A按逆時針方向運動到某定點,所形成的角為β.
(Ⅰ) 當點M第一次由點A按逆時針方向運動到定點C,第二次由點A按逆時針方向運動到定點D時,求cos(α-β)的值;
(Ⅱ)在A、B、C、D、E、F中是否存在兩個點,能使角α,β同時滿足α+2β=
2
,且tan
α
2
tanβ=3-2
3
.若不存在,說明理由; 若存在,找出定點并證明.

查看答案和解析>>

同步練習冊答案