設(shè)P是橢圓
x2
9
+
y2
4
=1上一點,F(xiàn)1、F2是橢圓的兩個焦點,則cos∠F1PF2的最小值是(  )
分析:利用橢圓的定義,余弦定理,結(jié)合基本不等式,即可求cos∠F1PF2的最小值是
解答:解:由題意,|PF1|+|PF2|=6,|F1F2|=2
5

∴cos∠F1PF2=
|PF1|2+|PF2|2-|F1F2|2
2|PF1||PF2|
=
16
2|PF1||PF2|
-1

∵|PF1|+|PF2|=6≥2
|PF1||PF2|

∴|PF1||PF2|≤9
16
2|PF1||PF2|
-1
-
1
9

故選A.
點評:本題考查橢圓的定義,余弦定理,考查基本不等式,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•閔行區(qū)二模)給出下列四個命題:
①如果復數(shù)z滿足|z+i|+|z-i|=2,則復數(shù)z在復平面的對應點的軌跡是橢圓.
②若對任意的n∈N*,(an+1-an-1)(an+1-2an)=0恒成立,則數(shù)列{an}是等差數(shù)列或等比數(shù)列.
③設(shè)f(x)是定義在R上的函數(shù),且對任意的x∈R,|f(x)|=|f(-x)|恒成立,則f(x)是R上的奇函數(shù)或偶函數(shù).
④已知曲線C:
x2
9
-
y2
16
=1
和兩定點E(-5,0)、F(5,0),若P(x,y)是C上的動點,則||PE|-|PF||<6.
上述命題中錯誤的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①如果復數(shù)z滿足|z+i|+|z-i|=2,則復數(shù)z在復平面上所對應點的軌跡是橢圓.
②設(shè)f(x)是定義在R上的函數(shù),且對任意的x∈R,|f(x)|=|f(-x)|恒成立,則f(x)是R上的奇函數(shù)或偶函數(shù).
③已知曲線C:
x2
9
-
y2
16
=1
和兩定點E(-5,0)、F(5,0),若P(x,y)是C上的動點,則||PE|-|PF||<6.
④設(shè)定義在R上的兩個函數(shù)f(x)、g(x)都有最小值,且對任意的x∈R,命題“f(x)>0或g(x)>0”正確,則f(x)的最小值為正數(shù)或g(x)的最小值為正數(shù).
上述命題中錯誤的個數(shù)是( 。

查看答案和解析>>

同步練習冊答案