已知橢圓C:=1的離心率為,左焦點(diǎn)為F(-1,0),
(1)設(shè)A,B分別為橢圓的左、右頂點(diǎn),過點(diǎn)F且斜率為k的直線L與橢圓C交于M,N兩點(diǎn),若,求直線L的方程;
(2)橢圓C上是否存在三點(diǎn)P,E,G,使得SOPE=SOPG=SOEG
(1) ; (2) 橢圓上不存在滿足條件的三點(diǎn)

試題分析:(1) 由已知 可解得 ,即橢圓方程為 。可得 。根據(jù)點(diǎn)斜式可得直線即直線方程為,將直線方程和橢圓方程聯(lián)立消去整理為關(guān)于的一元二次方程,可得根與系數(shù)的關(guān)系。再根據(jù)可求得的值,即可得所求直線方程。 (2)根據(jù)兩點(diǎn)確定一條直線可設(shè)兩點(diǎn)確定的直線為 l,注意討論直線的斜率存在與否,用弦長(zhǎng)公式可得的長(zhǎng),用點(diǎn)到線的距離公式可得點(diǎn)到線的距離,從而可得三角形面積。同理可得另兩個(gè)三角形面積,聯(lián)立方程可得三點(diǎn)橫縱坐標(biāo)的平方,根據(jù)三點(diǎn)坐標(biāo)判斷能否與點(diǎn)構(gòu)成三角形,若能說明存在滿足要求的三點(diǎn)否則說明不存在。
試題解析:(1)由題意:橢圓的方程為.
設(shè)點(diǎn),由得直線的方程為
由方程組消去,整理得,
可得,.
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044212810965.png" style="vertical-align:middle;" />,
所以


由已知得,解得.
故所求直線的方程為:
(2) 假設(shè)存在滿足.
不妨設(shè)兩點(diǎn)確定的直線為 l,
(ⅰ)當(dāng)直線l的斜率不存在時(shí), 兩點(diǎn)關(guān)于軸對(duì)稱,
所以,
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044213403676.png" style="vertical-align:middle;" />在橢圓上,
所以.①
又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044213434784.png" style="vertical-align:middle;" />,
所以|,②
由①、②得,
此時(shí),.
(ⅱ)當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為,
由題意知,將其代入

其中,
,(★)

所以.
因?yàn)辄c(diǎn)到直線l的距離為,
所以.

整理得 ,且符合(★)式.
此時(shí)
.
綜上所述,,結(jié)論成立.
同理可得:,
解得;.
因此只能從中選取,只能從中選。
因此只能在這四點(diǎn)中選取三個(gè)不同點(diǎn),
而這三點(diǎn)的兩兩連線中必有一條過原點(diǎn),
矛盾,
所以橢圓上不存在滿足條件的三點(diǎn)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的右焦點(diǎn)為,短軸的一個(gè)端點(diǎn)的距離等于焦距.
(1)求橢圓的方程;
(2)過點(diǎn)的直線與橢圓交于不同的兩點(diǎn),,是否存在直線,使得△與△的面積比值為?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知平面內(nèi)一動(dòng)點(diǎn)到兩個(gè)定點(diǎn)、的距離之和為,線段的長(zhǎng)為.

(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過點(diǎn)作直線與軌跡交于、兩點(diǎn),且點(diǎn)在線段的上方,
線段的垂直平分線為.
①求的面積的最大值;
②軌跡上是否存在除外的兩點(diǎn)、關(guān)于直線對(duì)稱,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓相交于、兩點(diǎn),且,試判斷的面積是否為定值?若為定值,求出定值;若不為定值,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的焦點(diǎn)到準(zhǔn)線的距離為.過點(diǎn)
作直線交拋物線兩點(diǎn)(在第一象限內(nèi)).
(1)若與焦點(diǎn)重合,且.求直線的方程;
(2)設(shè)關(guān)于軸的對(duì)稱點(diǎn)為.直線軸于. 且.求點(diǎn)到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,過拋物線y2=2px (p>0)的焦點(diǎn)F的直線l交拋物線于點(diǎn)A、B,交其準(zhǔn)線于點(diǎn)C,若|BC|=2|BF|,且|AF|=3,則此拋物線方程為(  )

A.y2=9x           B.y2=6x
C.y2=3x           D.y2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線的焦點(diǎn)是雙曲線的一個(gè)焦點(diǎn),則正數(shù)等于(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心為坐標(biāo)原點(diǎn)O,橢圓短半軸長(zhǎng)為1,動(dòng)點(diǎn)M(2,t)(t>0)在直線x=(a為長(zhǎng)半軸,c為半焦距)上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以O(shè)M為直徑且被直線3x-4y-5=0截得的弦長(zhǎng)為2的圓的方程;
(3)設(shè)F是橢圓的右焦點(diǎn),過點(diǎn)F作OM的垂線與以O(shè)M為直徑的圓交于點(diǎn)N,求證:線段ON的長(zhǎng)為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),A(-2,0),B(2,0),點(diǎn)P為動(dòng)點(diǎn),且直線AP與直線BP的斜率之積為-.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過點(diǎn)D(1,0)的直線l交軌跡C于不同的兩點(diǎn)MN,△MON的面積是否存在最大值?若存在,求出△MON的面積的最大值及相應(yīng)的直線方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案