【題目】若函數(shù)對其定義域內(nèi)的任意,,當(dāng)時(shí)總有,則稱為緊密函數(shù),例如函數(shù)是緊密函數(shù),下列命題:
緊密函數(shù)必是單調(diào)函數(shù);函數(shù)在時(shí)是緊密函數(shù);
函數(shù)是緊密函數(shù);
若函數(shù)為定義域內(nèi)的緊密函數(shù),,則;
若函數(shù)是緊密函數(shù)且在定義域內(nèi)存在導(dǎo)數(shù),則其導(dǎo)函數(shù)在定義域內(nèi)的值一定不為零.
其中的真命題是______.
【答案】.
【解析】
根據(jù)已知可得緊密函數(shù)的自變量與函數(shù)值是一一映射,單調(diào)函數(shù)一定是緊密函數(shù),但緊密函數(shù)不一定是單調(diào)的,由此逐一分析5個(gè)結(jié)論的真,可得答案.
解:函數(shù)對其定義域內(nèi)的任意,,當(dāng)時(shí)總有,
則稱為緊密函數(shù),
緊密函數(shù)的自變量與函數(shù)值是一一映射,
單調(diào)函數(shù)一定是緊密函數(shù),但緊密函數(shù)不一定是單調(diào)的,故錯(cuò)誤;
在時(shí)是單調(diào)遞增函數(shù),故一定是緊密函數(shù),故正確;
函數(shù),因?yàn)?/span>,所以不是緊密函數(shù),故錯(cuò)誤;
若函數(shù)為定義域內(nèi)的緊密函數(shù),,則,故正確;
函數(shù)是緊密函數(shù)且在定義域內(nèi)存在導(dǎo)數(shù),則其導(dǎo)函數(shù)在定義域內(nèi)的值可以為零,故錯(cuò)誤;
故答案為:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了配合今年上海迪斯尼游園工作,某單位設(shè)計(jì)了統(tǒng)計(jì)人數(shù)的數(shù)學(xué)模型:以表示第個(gè)時(shí)刻進(jìn)入園區(qū)的人數(shù);以表示第個(gè)時(shí)刻離開園區(qū)的人數(shù).設(shè)定以分鐘為一個(gè)計(jì)算單位,上午點(diǎn)分作為第個(gè)計(jì)算人數(shù)單位,即;點(diǎn)分作為第個(gè)計(jì)算單位,即;依次類推,把一天內(nèi)從上午點(diǎn)到晚上點(diǎn)分分成個(gè)計(jì)算單位(最后結(jié)果四舍五入,精確到整數(shù)).
(1)試計(jì)算當(dāng)天點(diǎn)至點(diǎn)這一小時(shí)內(nèi),進(jìn)入園區(qū)的游客人數(shù)、離開園區(qū)的游客人數(shù)各為多少?
(2)假設(shè)當(dāng)日園區(qū)游客總?cè)藬?shù)達(dá)到或超過萬時(shí),園區(qū)將采取限流措施.該單位借助該數(shù)學(xué)模型知曉當(dāng)天點(diǎn)(即)時(shí),園區(qū)總?cè)藬?shù)會(huì)達(dá)到最高,請問當(dāng)日是否要采取限流措施?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中,設(shè).
(1)如果為奇函數(shù),求實(shí)數(shù)、滿足的條件;
(2)在(1)的條件下,若函數(shù)在區(qū)間上為增函數(shù),求的取值范圍;
(3)若對任意的恒有成立.證明:當(dāng)時(shí),成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若A1,A2,…,Am為集合A={1,2,…,n}(n≥2且n∈N*)的子集,且滿足兩個(gè)條件:
①A1∪A2∪…∪Am=A;
②對任意的{x,y}A,至少存在一個(gè)i∈{1,2,3,…,m},使Ai∩{x,y}={x}或{y}.則稱集合組A1,A2,…,Am具有性質(zhì)P.
如圖,作n行m列數(shù)表,定義數(shù)表中的第k行第l列的數(shù)為akl.
a11 | a12 | … | a1m |
a21 | a22 | … | a2m |
… | … | … | … |
an1 | an2 | … | anm |
(1)當(dāng)n=4時(shí),判斷下列兩個(gè)集合組是否具有性質(zhì)P,如果是請畫出所對應(yīng)的表格,如果不是請說明理由;
集合組1:A1={1,3},A2={2,3},A3={4};
集合組2:A1={2,3,4},A2={2,3},A3={1,4}.
(2)當(dāng)n=7時(shí),若集合組A1,A2,A3具有性質(zhì)P,請先畫出所對應(yīng)的7行3列的一個(gè)數(shù)表,再依此表格分別寫出集合A1,A2,A3;
(3)當(dāng)n=100時(shí),集合組A1,A2,…,At是具有性質(zhì)P且所含集合個(gè)數(shù)最小的集合組,求t的值及|A1|+|A2|+…|At|的最小值.(其中|Ai|表示集合Ai所含元素的個(gè)數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中)的最小周期為.
(1)求的值及的單調(diào)遞增區(qū)間;
(2)將函數(shù)的圖象向右平移個(gè)單位,再將圖象上各點(diǎn)的橫坐標(biāo)縮短為原來的(縱坐標(biāo)不變)得到函數(shù)的圖象,若關(guān)于x的方程在區(qū)間上有且只有一個(gè)解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于自然數(shù)數(shù)組,如下定義該數(shù)組的極差:三個(gè)數(shù)的最大值與最小值的差.如果的極差,可實(shí)施如下操作:若中最大的數(shù)唯一,則把最大數(shù)減2,其余兩個(gè)數(shù)各增加1;若中最大的數(shù)有兩個(gè),則把最大數(shù)各減1,第三個(gè)數(shù)加2,此為一次操作,操作結(jié)果記為,其級差為.若,則繼續(xù)對實(shí)施操作,…,實(shí)施次操作后的結(jié)果記為,其極差記為.例如:,.
(1)若,求和的值;
(2)已知的極差為且,若時(shí),恒有,求的所有可能取值;
(3)若是以4為公比的正整數(shù)等比數(shù)列中的任意三項(xiàng),求證:存在滿足.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),實(shí)數(shù)且.
(1)設(shè),判斷函數(shù)在上的單調(diào)性,并說明理由;
(2)設(shè)且時(shí),的定義域和值域都是,求的最大值;
(3)若不等式對恒成立,求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,相鄰兩項(xiàng)an,an+1是關(guān)于x的方程:x2+3nx+bn0(n∈N*)的兩實(shí)根,且a1=1.
(1)若Sn為數(shù)列{an}的前n項(xiàng)和,求S100 ;
(2)求數(shù)列{an}和{bn}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的長軸為,且過點(diǎn)
(1)求橢圓的方程;
(2)設(shè)點(diǎn)為原點(diǎn),若點(diǎn)在曲線上,點(diǎn)在直線上,且,試判斷直線與圓的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com