【題目】已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿足xf′(x)+2f(x)= ,且f(e)=
(Ⅰ)求f(x)的表達(dá)式
(Ⅱ)求函數(shù)f(x)在[1,e2]上的最大值與最小值.
【答案】解:(Ⅰ)由xf′(x)+2f(x)= x2f′(x)+2xf(x)=lnx(x2f(x))′=lnx,
設(shè)x2f(x)=xlnx﹣x+c,
∵f(e)= ,故c= ,
∴x2f(x)=xlnx﹣x+ ,
∴f(x)= ﹣ + (x>0);
(Ⅱ)由(Ⅰ)f′(x)= ,
令h(x)=2x﹣xlnx﹣e,則h′(x)=1﹣lnx,
故h(x)在(0,e)遞增,(e,+∞)遞減,
而h(e)=0,故h(x)≤0,即f′(x)≤0,
∴f(x)在(0,+∞)為減,f(x)在[1,e2]遞減,
故f(x)max=f(1)= ﹣1,f(x)min=f(e2)= .
【解析】(Ⅰ)得到(x2f(x))′=lnx,設(shè)x2f(x)=xlnx﹣x+c,根據(jù)f(e)= ,求出c的值,從而求出f(x)的解析式;(Ⅱ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最值即可.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)的最大(小)值與導(dǎo)數(shù)(求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(x﹣1)2(x﹣a)(a∈R)在x= 處取得極值.
(1)求實(shí)數(shù)a的值;
(2)求函數(shù)y=f(x)在閉區(qū)間[0,3]的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為等差數(shù)列,前n項(xiàng)和為, 是首項(xiàng)為2的等比數(shù)列,且公比大于0, ,, .
(Ⅰ)求和的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓 M與圓N:(x﹣ )2+(y+ )2=r2關(guān)于直線y=x對(duì)稱,且點(diǎn)D(﹣ , )在圓M上.
(1)判斷圓M與圓N的公切線的條數(shù);
(2)設(shè)P為圓M上任意一點(diǎn),A(﹣1, ),B(1, ),P,A,B三點(diǎn)不共線,PG為∠APB的平分線,且交AB于G,求證:△PBG與△APG的面積之比為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面幾種推理中是演繹推理的序號(hào)為( )
A.由金、銀、銅、鐵可導(dǎo)電,猜想:金屬都可導(dǎo)電
B.猜想數(shù)列 {an}的通項(xiàng)公式為 (n∈N+)
C.半徑為r圓的面積S=πr2 , 則單位圓的面積S=π
D.由平面直角坐標(biāo)系中圓的方程為(x﹣a)2+(y﹣b)2=r2 , 推測(cè)空間直角坐標(biāo)系中球的方程為(x﹣a)2+(y﹣b)2+(z﹣c)2=r2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】單個(gè)蜂巢可以近似地看作是一個(gè)正六邊形,如圖為一組蜂巢的截面圖.其中第一個(gè)圖有1個(gè)蜂巢,第二個(gè)圖有7個(gè)蜂巢,第三個(gè)圖有19個(gè)蜂巢,按此規(guī)律,以f(n)表示第n幅圖的蜂巢總數(shù).則f(4)=________;f(n)=________( )
A.37 3n2﹣3n+1
B.38 3n2﹣3n+2
C.36 3n2﹣3n
D.35 3n2﹣3n﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線與拋物線y2=4x相交于不同的A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1) 如果直線過(guò)拋物線的焦點(diǎn)且斜率為1,求的值;
(2)如果,證明:直線必過(guò)一定點(diǎn),并求出該定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面為梯形, 底面, , , , .
(1)求證:平面 平面;
(2)設(shè)為上的一點(diǎn),滿足,若直線與平面所成角的正切值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法: ①一組數(shù)據(jù)不可能有兩個(gè)眾數(shù);
②一組數(shù)據(jù)的方差必為正數(shù),且方差越大,數(shù)據(jù)的離散程度越大;
③將一組數(shù)據(jù)中的每個(gè)數(shù)都加上同一個(gè)常數(shù)后,方差恒不變;
④在頻率分布直方圖中,每個(gè)長(zhǎng)方形的面積等于相應(yīng)小組的頻率.
其中錯(cuò)誤的個(gè)數(shù)有( )
A.0
B.1
C.2
D.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com