(1)已知矩陣M所對應(yīng)的線性變換把點(diǎn)A(x,y)變成點(diǎn)A′(13,5),試求M的逆矩陣及點(diǎn)A的坐標(biāo).
(2)已知直線l:3x+4y-12=0與圓C:(θ為參數(shù) )試判斷他們的公共點(diǎn)個(gè)數(shù);
(3)解不等式|2x-1|<|x|+1.
【答案】分析:(1)由矩陣的線性變換列出關(guān)于x和y的一元二次方程組,求出方程組的解集即可得到點(diǎn)A的坐標(biāo);可設(shè)出矩陣M的逆矩陣,根據(jù)逆矩陣的定義得到逆矩陣與矩陣M的乘積等于單位矩陣,得到一個(gè)一元二次方程組,求出方程組的解集即可得到M的逆矩陣;
(2)把圓的參數(shù)方程化為普通方程后,找出圓心坐標(biāo)與半徑,然后利用點(diǎn)到直線的距離公式求出圓心到直線的距離d與半徑r比較大小得到直線與圓的位置關(guān)系,即可得到交點(diǎn)的個(gè)數(shù);
(3)分三種情況x大于等于,x大于等于0小于和x小于0,分別化簡絕對值后,求出解集,即可得到原不等式的解集.三個(gè)題中任選兩個(gè)作答即可.
解答:解:(1)由題意可知(x,y)=(13,5),即
解得,所以A(2,-3);
設(shè)矩陣M的逆矩陣為,則=,即,
,解得a=-1,b=3,c=-1,d=2
所以矩陣M的逆矩陣為;
(2)把圓的參數(shù)方程化為普通方程得(x+1)2+(y-2)2=4,圓心(-1,2),半徑r=2
則圓心到已知直線的距離d==<2=r,得到直線與圓的位置關(guān)系是相交,
所以直線與圓的公共點(diǎn)有兩個(gè);
(3)當(dāng)x≥時(shí),原不等式變?yōu)椋?x-1<x+1,解得x<2,所以原不等式的解集為[,2);
當(dāng)0≤x<時(shí),原不等式變?yōu)椋?-2x<x+1,解得x>0,所以原不等式的解集為[0,);
當(dāng)x<0時(shí),原不等式變?yōu)椋?-2x<-x+1,解得x>0,所以原不等式無解.
綜上,原不等式的解集為[0,2).
點(diǎn)評:此題考查學(xué)生會(huì)求矩陣的逆矩陣及掌握矩陣的線性變換,靈活運(yùn)用點(diǎn)到直線的距離公式化簡求值,掌握直線與圓的位置關(guān)系的判斷方法,會(huì)利用討論的方法求絕對值不等式的解集,是一道綜合題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

本題設(shè)有(1)(2)(3)三個(gè)選考題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
(1)已知矩陣M=
1a
b1
,N=
c2
0d
,且MN=
20
-20
,
(Ⅰ)求實(shí)數(shù)a,b,c,d的值;(Ⅱ)求直線y=3x在矩陣M所對應(yīng)的線性變換下的像的方程.
(2)在直角坐標(biāo)系xoy中,直線l的參數(shù)方程為
x=3-
2
2
t
y=
5
-
2
2
t
(t為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=2
5
sinθ

(Ⅰ)求圓C的直角坐標(biāo)方程;(Ⅱ)設(shè)圓C與直線l交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為(3,
5
)
,
求|PA|+|PB|.
(3)已知函數(shù)f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x+5)≥m對一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考試題分項(xiàng)版理科數(shù)學(xué)之專題十七 選修系列 題型:解答題

本題設(shè)有(1)(2)(3)三個(gè)選考題,每題7分,請考生任選2題作答,滿分14分。如果多做,則按所做的前兩題記分。作答時(shí),先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中。
(1)(本小題滿分7分)選修4-2:矩陣與變換
已知矩陣M=,N=,且MN=。
(Ⅰ)求實(shí)數(shù)a,b,c,d的值;(Ⅱ)求直線y=3x在矩陣M所對應(yīng)的線性變換作用下的像的方程。
(2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,直線L的參數(shù)方程為 (t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為=2sin。
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線L交于點(diǎn)A,B。若點(diǎn)P的坐標(biāo)為(3,),求∣PA∣+∣PB∣。
(3)(本小題滿分7分)選修4-5:不等式選講
已知函數(shù)f(x)= ∣x-a∣.
(Ⅰ)若不等式f(x) 3的解集為,求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x+5)≥m對一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:福建 題型:解答題

本題設(shè)有(1)(2)(3)三個(gè)選考題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
(1)已知矩陣M=
1a
b1
N=
c2
0d
,且MN=
20
-20
,
(Ⅰ)求實(shí)數(shù)a,b,c,d的值;(Ⅱ)求直線y=3x在矩陣M所對應(yīng)的線性變換下的像的方程.
(2)在直角坐標(biāo)系xoy中,直線l的參數(shù)方程為
x=3-
2
2
t
y=
5
-
2
2
t
(t為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=2
5
sinθ

(Ⅰ)求圓C的直角坐標(biāo)方程;(Ⅱ)設(shè)圓C與直線l交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為(3,
5
)
,
求|PA|+|PB|.
(3)已知函數(shù)f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x+5)≥m對一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年福建省高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

本題設(shè)有(1)(2)(3)三個(gè)選考題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
(1)已知矩陣M=,且
(Ⅰ)求實(shí)數(shù)a,b,c,d的值;(Ⅱ)求直線y=3x在矩陣M所對應(yīng)的線性變換下的像的方程.
(2)在直角坐標(biāo)系xoy中,直線l的參數(shù)方程為(t為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為
(Ⅰ)求圓C的直角坐標(biāo)方程;(Ⅱ)設(shè)圓C與直線l交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為,
求|PA|+|PB|.
(3)已知函數(shù)f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x+5)≥m對一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)單元檢測:新課標(biāo)4系列選考內(nèi)容(解析版) 題型:解答題

本題設(shè)有(1)(2)(3)三個(gè)選考題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
(1)已知矩陣M=,,且,
(Ⅰ)求實(shí)數(shù)a,b,c,d的值;(Ⅱ)求直線y=3x在矩陣M所對應(yīng)的線性變換下的像的方程.
(2)在直角坐標(biāo)系xoy中,直線l的參數(shù)方程為(t為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為
(Ⅰ)求圓C的直角坐標(biāo)方程;(Ⅱ)設(shè)圓C與直線l交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為
求|PA|+|PB|.
(3)已知函數(shù)f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x+5)≥m對一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案