過(guò)拋物線y2=2px(p>0)的對(duì)稱軸上的定點(diǎn)M(m,0)(m>0),作直線AB與拋物線相交于A,B兩點(diǎn).
(1)試證明A,B兩點(diǎn)的縱坐標(biāo)之積為定值;
(2)若點(diǎn)N是定直線l:x=-m上的任意一點(diǎn),分別記直線AN,MN,BN的斜率為k1、k2、k3,
試求k1、k2、k3之間的關(guān)系,并給出證明.

【答案】分析:(1)設(shè)A(x1,y1),B(x2,y2),設(shè)直線AB的方程為:x=ty+m與y2=2px聯(lián)立得y2=2px,x=ty+m,消去x得y2-2pty-2pm=0,再由韋達(dá)定理得y1•y2為定值;
(2)三條直線AN,MN,BN的斜率成等差數(shù)列,證明如下:設(shè)點(diǎn)N(-m,n),則直線AN的斜率為;直線BN的斜率為,由此能夠推導(dǎo)出kAN+kBN=2kMN,即直線AN,MN,BN的斜率成等差數(shù)列.
解答:解:(1)證明:.設(shè)A(x1,y1),B(x2,y2)有y1•y2=-2pm,下證之:
設(shè)直線AB的方程為:x=ty+m與y2=2px聯(lián)立得y2=2px
x=ty+m,消去x得y2-2pty-2pm=0(4分)
由韋達(dá)定理得y1•y2=-2pm,(6分)
(2)解:三條直線AN,MN,BN的斜率成等差數(shù)列,(9分)
下證之:
設(shè)點(diǎn)N(-m,n),則直線AN的斜率為;
直線BN的斜率為

=
=
=(13分)
又∵直線MN的斜率為(14分)
∴kAN+kBN=2kMN,即直線AN,MN,BN的斜率成等差數(shù)列. (15分)
點(diǎn)評(píng):本題考查直線和圓錐曲線的位置關(guān)系,解題時(shí)要注意公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F的直線l與拋物線在第一象限的交點(diǎn)為A,與拋物線的準(zhǔn)線的交點(diǎn)為B,點(diǎn)A在拋物線準(zhǔn)線上的射影為C,若
AF
=
FB
,
BA
BC
=48
,則拋物線的方程為( 。
A、y2=4x
B、y2=8x
C、y2=16x
D、y2=4
2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)拋物線y2=2px(p>0)上一定點(diǎn)P(x0,y0)(y0>0)作兩條直線分別交拋物線于A(x1,y1),B(x2,y2),若PA與PB的斜率存在且傾斜角互補(bǔ),則
y1+y2y0
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F作直線交拋物線于A、B兩點(diǎn),O為拋物線的頂點(diǎn).則△ABO是一個(gè)(  )
A、等邊三角形B、直角三角形C、不等邊銳角三角形D、鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F的直線AB交拋物線于A,B兩點(diǎn),弦AB的中點(diǎn)為M,過(guò)M作AB的垂直平分線交x軸于N.
(1)求證:FN=
12
AB
;
(2)過(guò)A,B的拋物線的切線相交于P,求P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•武漢模擬)已知過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F的直線交拋物線于M、N兩點(diǎn),直線OM、ON(O為坐標(biāo)原點(diǎn))分別與準(zhǔn)線l:x=-
p
2
相交于P、Q兩點(diǎn),則∠PFQ=(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案