在直角坐標系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為 
(Ⅰ)已知在極坐標(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為,判斷點P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點Q是曲線C上的一個動點,求它到直線l的距離的最值;
(Ⅲ)請問是否存在直線 ,∥l且與曲線C的交點A、B滿足;
若存在請求出滿足題意的所有直線方程,若不存在請說明理由。
(Ⅰ)P(0,4),點P在直線上(Ⅱ)最小值為,最大值為(Ⅲ)

試題分析:(I)把極坐標系下的點化為直角坐標,得P(0,4)2分
因為點P的直角坐標(0,4)滿足直線的方程,所以點P在直線上.4分
(II)因為點Q在曲線C上,故可設(shè)點Q的坐標為,5分
從而點Q到直線的距離為
,    6分
由此得,當(dāng)時,d取得最小值,且最小值為
當(dāng)時,d取得最大值,且最大值為        8分
(Ⅲ)設(shè)平行線m方程:               9分

設(shè)O到直線m的距離為d,則   10分
 
經(jīng)驗證均滿足題意 ,所求方程為      12分
點評:極坐標與直角坐標的互化,第二問求距離的最值首先找到距離的表達式,借助于三角函數(shù)參數(shù)的有界性求得最值,第三問是直線與橢圓相交問題,此題求三角形面積用到了弦長,因此聯(lián)立方程求出弦長得到面積
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,己知直線l與拋物線相切于點P(2,1),且與x軸交于點A,定點B(2,0).

(1)若動點M滿足,求點M軌跡C的方程:
(2)若過點B的直線(斜率不為零)與(1)中的軌跡C交于不同的兩點E,F(xiàn)(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△ABC中,∠CAB=∠CBA=30°,AC、BC邊上的高分別為BD、AE,則以A、B為焦點,且過D、E的橢圓與雙曲線的離心率分別為,則     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)分別為雙曲線的左、右焦點.若在雙曲線右支上存在點,滿足,且到直線的距離等于雙曲線的實軸長,則該雙曲線的離心率為(    )
A.B.C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的右焦點為,直線軸交于點,若(其中為坐標原點).
(I)求橢圓的方程;
(II)設(shè)是橢圓上的任意一點,為圓的任意一條直徑(、為直徑的兩個端點),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線與雙曲線C:交于兩點,是線段的中 點,若是原點)的斜率的乘積等于,則此雙曲線的離心率為        ___

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線,直線截拋物線C所得弦長為.
(1)求拋物線的方程;
(2)已知是拋物線上異于原點的兩個動點,記試求當(dāng)取得最小值時的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,,圓,一動圓在軸右側(cè)與軸相切,同時與圓相外切,此動圓的圓心軌跡為曲線C,曲線E是以,為焦點的橢圓。
(1)求曲線C的方程;
(2)設(shè)曲線C與曲線E相交于第一象限點P,且,求曲線E的標準方程;
(3)在(1)、(2)的條件下,直線與橢圓E相交于A,B兩點,若AB的中點M在曲線C上,求直線的斜率的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過拋物線焦點的直線與拋物線交于兩點,,且中點的縱坐標為,則的值為______.

查看答案和解析>>

同步練習(xí)冊答案