已知函數(shù)f(x)=2+
1x
的反函數(shù)為f-1(x),若f-1(x)>0,則x的取值范圍為
(2,+∞)
(2,+∞)
分析:本題即求原函數(shù)當x>0時的值域,當x>0時,由于
1
x
>0,故 f(x)=2+
1
x
>2,由此求得結(jié)果.
解答:解:本題要求的是反函數(shù)值大于零時的定義域,即求原函數(shù)當x>0時的值域.
∵當x>0時,
1
x
>0,∴f(x)=2+
1
x
>2,
故答案為(2,+∞).
點評:本題主要考查函數(shù)的反函數(shù)與原函數(shù)的定義域、值域間的關系,求函數(shù)的值域,體現(xiàn)了轉(zhuǎn)化的數(shù)學思想,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2-xx+1
;
(1)求出函數(shù)f(x)的對稱中心;
(2)證明:函數(shù)f(x)在(-1,+∞)上為減函數(shù);
(3)是否存在負數(shù)x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2-x-1,x≤0
x
,x>0
,則f[f(-2)]=
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函數(shù)f(x)的值域和最小正周期;
(2)當x∈[0,2π]時,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2-
ax+1
(a∈R)
的圖象過點(4,-1)
(1)求a的值;
(2)求證:f(x)在其定義域上有且只有一個零點;
(3)若f(x)+mx>1對一切的正實數(shù)x均成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],則當x=
3
3
時,函數(shù)f(x)有最大值,最大值為
2
3
2
3

查看答案和解析>>

同步練習冊答案