以點(diǎn)F1(-1,0),F(xiàn)2(1,0)為焦點(diǎn)的橢圓C經(jīng)過點(diǎn)(1,)。
(I)求橢圓C的方程;
(II)過P點(diǎn)分別以為斜率的直線分別交橢圓C于A,B,M,N,求證: 使得
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率為的橢圓過點(diǎn)
(1)求橢圓的方程;
(2)設(shè)不過原點(diǎn)O的直線與該橢圓交于P,Q兩點(diǎn),滿足直線的斜率依次成等比數(shù)列,
求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知平面內(nèi)一動(dòng)點(diǎn)P到點(diǎn)F(1,0)的距離與點(diǎn)P到y(tǒng)軸的距離的差等于1.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程;
(Ⅱ)過點(diǎn)F作兩條斜率存在且互相垂直的直線l1,l2,設(shè)l1與軌跡C相交于點(diǎn)A,B,l2與軌跡C相交于點(diǎn)D,E,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,直線與以原點(diǎn)為圓心、橢圓的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)如圖,、、是橢圓的頂點(diǎn),是橢圓上除頂點(diǎn)外的任意點(diǎn),直線交軸于點(diǎn),直線交于點(diǎn),設(shè)的斜率為,的斜率為,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,左、右焦瞇分別為F1,F(xiàn)2,且|F1F2|=2,點(diǎn)P(1,)在橢圓C上.
(I)求橢圓C的方程;
(II)過F1的直線l與橢圓C相交于A,B兩點(diǎn),且的面積為,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)拋物線的焦點(diǎn)為,其準(zhǔn)線與軸的交點(diǎn)為,過點(diǎn)的直線交拋物線于兩點(diǎn).
(1)若直線的斜率為,求證:;
(2)設(shè)直線的斜率分別為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知左焦點(diǎn)為的橢圓過點(diǎn).過點(diǎn)分別作斜率為的橢圓的動(dòng)弦,設(shè)分別為線段的中點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若為線段的中點(diǎn),求;
(3)若,求證直線恒過定點(diǎn),并求出定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:的左焦點(diǎn)為,右焦點(diǎn)為.
(Ⅰ)設(shè)直線過點(diǎn)且垂直于橢圓的長軸,動(dòng)直線垂直于點(diǎn)P,線段的垂直平分線交于點(diǎn)M,求點(diǎn)M的軌跡的方程;
(Ⅱ)設(shè)為坐標(biāo)原點(diǎn),取曲線上不同于的點(diǎn),以為直徑作圓與相交另外一點(diǎn),求該圓的面積最小時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:+=1(a>b>0)的焦距為4,且與橢圓x2+=1有相同的離心率,斜率為k的直線l經(jīng)過點(diǎn)M(0,1),與橢圓C交于不同的兩點(diǎn)A、B.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)橢圓C的右焦點(diǎn)F在以AB為直徑的圓內(nèi)時(shí),求k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com