在平面直角坐標系中,已知橢圓的中心在原點,焦點在軸上,短軸長為,離心率為.
(I)求橢圓的方程;
(II) 為橢圓上滿足的面積為的任意兩點,為線段的中點,射線交橢圓與點,設(shè),求實數(shù)的值.

(I)         (Ⅱ)  

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的離心率,是其左右焦點,點是直線(其中)上一點,且直線的傾斜角為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若 是橢圓上兩點,滿足,求為坐標原點)面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知過點的直線與拋物線交于兩點,為坐標原點.
(1)若以為直徑的圓經(jīng)過原點,求直線的方程;
(2)若線段的中垂線交軸于點,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓與直線相交于兩點.
(1)若橢圓的半焦距,直線圍成的矩形的面積為8,
求橢圓的方程;
(2)若為坐標原點),求證:;
(3)在(2)的條件下,若橢圓的離心率滿足,求橢圓長軸長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線

(I);
(II)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)F為拋物線E: 的焦點,A、B、C為該拋物線上三點,已知 .
(1)求拋物線方程;
(2)設(shè)動直線l與拋物線E相切于點P,與直線相交于點Q。證明以PQ為直徑的圓恒過y軸上某定點。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

平面內(nèi)動點到點的距離等于它到直線的距離,記點的軌跡為曲
(Ⅰ)求曲線的方程;
(Ⅱ)若點,,上的不同三點,且滿足.證明: 不可能為直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在矩形中,分別為四邊的中點,且都在坐標軸上,設(shè),

(Ⅰ)求直線的交點的軌跡的方程;
(Ⅱ)過圓上一點作圓的切線與軌跡交于兩點,若,試求出的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,己知直線l與拋物線相切于點P(2,1),且與x軸交于點A,定點B(2,0).

(1)若動點M滿足,求點M軌跡C的方程:
(2)若過點B的直線(斜率不為零)與(1)中的軌跡C交于不同的兩點E,F(xiàn)(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案