中,,給出滿足的條件,就能得到動點的軌跡方程,下表給出了一些條件及方程:
條件
方程
① 周長為10

② 面積為10

③ 中,

則滿足條件①、②、③的軌跡方程分別為________(用代號、、填入) 
..

試題分析:若周長為10,則AB+AC=6,根據(jù)橢圓定義知:點A的軌跡為橢圓;
面積為10,則點A到直線BC的距離為定值5,所以點A 的軌跡方程為;
,則點A在以BC為直徑的圓上,所以點A的軌跡方程為。
點評:求軌跡方程的一般方法:直接法、定義法、相關(guān)點法、參數(shù)法、交軌法、向量法等。本題求軌跡方程用到的是定義法。用定義法求軌跡方程的關(guān)鍵是條件的轉(zhuǎn)化——轉(zhuǎn)化成某一已知曲線的定義條件。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知正方形ABCD 對角線AC所在直線方程為 .拋物線過B,D兩點
(1)若正方形中心M為(2,2)時,求點N(b,c)的軌跡方程。
(2)求證方程的兩實根滿足

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓方程為),F(-c,0)和F(c,0)分別是橢圓的左 右焦點.
①若P是橢圓上的動點,延長到M,使=,則M的軌跡是圓;
②若P是橢圓上的動點,則
③以焦點半徑為直徑的圓必與以長軸為直徑的圓內(nèi)切;
④若在橢圓上,則過的橢圓的切線方程是;
⑤點P為橢圓上任意一點,則橢圓的焦點角形的面積為.
以上說法中,正確的有                

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的頂點與雙曲線的焦點重合,它們的離心率之和為,若橢圓的焦點在軸上,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)F1、F2為橢圓的左、右焦點,過橢圓中心任作一直線與橢圓交于P、Q 兩點,當(dāng)四邊形PF1QF2面積最大時,的值等于(    )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

平面、兩兩垂直,定點,A到、距離都是1,P是上動點,P到的距離等于P到點的距離,則P點軌跡上的點到距離的最小值是          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

與橢圓共焦點且過點(5,-2)的雙曲線標(biāo)準(zhǔn)方程是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓上一點M到焦點的距離為2,的中點,則等于(   )
A.2B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

雙曲線的兩條漸近線的夾角大小等于        

查看答案和解析>>

同步練習(xí)冊答案