【題目】已知橢圓的左右焦點分別為點.為橢圓上的一動點,面積的最大值為.過點的直線被橢圓截得的線段為,當軸時,

(1)求橢圓的方程;

(2)橢圓上任取兩點A,B,以,為鄰邊作平行四邊形.若,則是否為定值?若是,求出定值;如不是,請說明理由.

【答案】(1);(2)是定值,10

【解析】

1)由已知條件可知,,再結(jié)合,求橢圓方程;

2)設,,由平行四邊形法則,所以.

所以,再變形為,再根據(jù)已知條件轉(zhuǎn)化坐標間的關(guān)系,求得定值.

1)由題意:的最大面積,.

,聯(lián)立方程可解得,所以橢圓的方程為:.

2)設,,由平行四邊形法則,所以.

所以.

又因為,即,即.

又因為點AB在橢圓上,則,

可得①, ②,

①×②可得,

,所以,.

又①+②可得,可得.

所以.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】我國古代科學家祖沖之兒子祖暅在實踐的基礎上提出了體積計算的原理:“冪勢既同,則積不容異”(“冪”是截面積,“勢”是幾何體的高),意思是兩個同高的幾何體,如在等高處截面的面積恒相等,則它們的體積相等.已知某不規(guī)則幾何體與如圖所示的三視圖所表示的幾何體滿足“冪勢既同”,則該不規(guī)則幾何體的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】曲線為:到兩定點、距離乘積為常數(shù)的動點的軌跡.以下結(jié)論正確的個數(shù)為(

1)曲線一定經(jīng)過原點;

2)曲線關(guān)于軸、軸對稱;

3的面積不大于;

4)曲線在一個面積為的矩形范圍內(nèi).

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校積極開展服務社會,提升自我的志愿者服務活動,九年級的五名同學(三男兩女)成立了交通秩序維護小分隊.若從該小分隊中任選兩名同學進行交通秩序維護,則恰是一男一女的概率是________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),則方程恰好有6個不同的解,則實數(shù)的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(Ⅰ)求證:當時,

(Ⅱ)存在,使得成立,求a的取值范圍;

(Ⅲ)若恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人同時參加一個外貿(mào)公司的招聘,招聘分筆試與面試兩部分,先筆試后面試.甲筆試與面試通過的概率分別為0.8,0.5,乙筆試與面試通過的概率分別為0.8,0.4,且筆試通過了才能進入面試,面試通過則直接招聘錄用,兩人筆試與面試相互獨立互不影響.

(1)求這兩人至少有一人通過筆試的概率;

(2)求這兩人筆試都通過卻都未被錄用的概率;

(3)記這兩人中最終被錄用的人數(shù)為X,X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】汽車的燃油效率是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )

A. 消耗1升汽油,乙車最多可行駛5千米

B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多

C. 甲車以80千米/小時的速度行駛1小時,消耗10升汽油

D. 某城市機動車最高限速80千米/小時. 相同條件下,在該市用丙車比用乙車更省油

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于任意,若數(shù)列滿足,則稱這個數(shù)列為“K數(shù)列”.

1)已知數(shù)列:1,是“K數(shù)列”,求實數(shù)m的取值范圍;

2)是否存在首項為-1的無窮等差數(shù)列為“K數(shù)列”,且其前n項和滿足:,若存在,求出的通項公式;若不存在,請說明理由;

3)已知各項均為正整數(shù)的等比數(shù)列(至少有4項)為“K數(shù)列”,數(shù)列不是“K數(shù)列”,若,是否存在,使為“K數(shù)列”?若存在,請求出,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案