國(guó)家助學(xué)貸款是由財(cái)政貼息的信用貸款,旨在幫助高校家庭經(jīng)濟(jì)困難學(xué)生支付在校期間所需的學(xué)費(fèi)、住宿費(fèi)及生活費(fèi)。每一年度申請(qǐng)總額不超過6000元。某大學(xué)2012屆畢業(yè)生凌霄在本科期間共申請(qǐng)了24000元助學(xué)貸款,并承諾畢業(yè)后3年(按36個(gè)月計(jì))內(nèi)還清。簽約單位提供的工資標(biāo)準(zhǔn)為第一年內(nèi)每月1500元,第13個(gè)月開始每月工資比前一個(gè)月增加5%直到4000元。凌霄同學(xué)計(jì)劃前12個(gè)月每月還款500元,第13個(gè)月開始每月還款比前一個(gè)月多元.
(1)若凌霄同學(xué)恰好在第36個(gè)月(即畢業(yè)后3年)還清貸款,求值;(6分)
(2)當(dāng)時(shí),凌霄同學(xué)將在畢業(yè)后第幾個(gè)月還清最后一筆貸款?他當(dāng)月工資余額能否滿足當(dāng)月3000元的基本生活費(fèi)?(6分)
(參考數(shù)據(jù):,
(1)20
(2) 3789-450=3339(元)故能夠滿足當(dāng)月的基本生活需求

試題分析:解:(1)由題,從第13個(gè)月開始,每個(gè)月還款額為構(gòu)成等差數(shù)列,其中,公差為,于是,到第36個(gè)月凌霄其還款
,解得
設(shè)凌霄除第一年外還需n個(gè)月還清,則
  

所以凌霄畢業(yè)后31個(gè)月還清貸款,這個(gè)月凌霄還款額:

他當(dāng)月工資:
工資余額: 3789-450=3339(元)
故能夠滿足當(dāng)月的基本生活需求。(12’)
點(diǎn)評(píng):解決的關(guān)鍵是通過等比數(shù)列的求和公式來得到還款額,同時(shí)能借助于方程來得到工資余額,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,用符號(hào)表示不超過的最大整數(shù)。函數(shù)有且僅有3個(gè)零點(diǎn),則的取值范圍是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

為確保信息安全,需設(shè)計(jì)軟件對(duì)信息加密,發(fā)送方由明文→密文(加密),接收方由密文→明文(解密),已知加密規(guī)則為:明文:對(duì)應(yīng)密文:,當(dāng)接收方收到密文14,9,23,28時(shí),解密得到的明文為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

對(duì)于定義在實(shí)數(shù)集上的兩個(gè)函數(shù),若存在一次函數(shù)使得,對(duì)任意的,都有,則把函數(shù)的圖像叫函數(shù)的“分界線”,F(xiàn)已知,為自然對(duì)數(shù)的底數(shù)),
(1)求的遞增區(qū)間;
(2)當(dāng)時(shí),函數(shù)是否存在過點(diǎn)的“分界線”?若存在,求出函數(shù)的解析式,若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是定義在R上的偶函數(shù),在區(qū)間上為增函數(shù),且,則不等式的解集為( )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

,,…, .若,則的值為      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

兩縣城A和B相距20km,現(xiàn)計(jì)劃在兩縣城外,以AB為直徑的半圓弧AB上選擇一點(diǎn)C建造垃圾處理廠,其對(duì)城市的影響度與所選地點(diǎn)到城市的距離有關(guān),對(duì)城A和城B的總影響度為對(duì)城A與城B的影響度之和,記C點(diǎn)到城A的距離為,建在C處的垃圾處理廠對(duì)城A和城B的總影響度為,統(tǒng)計(jì)調(diào)查表明:垃圾處理廠對(duì)城A的影響度與所選地點(diǎn)到城A的距離的平方成反比,比例系數(shù)為4;對(duì)城B的影響度與所選地點(diǎn)到城B的距離的平方成反比,比例系數(shù)為k,當(dāng)垃圾處理廠建在AB的中點(diǎn)時(shí),對(duì)A和城B的總影響度為0.065。



(1)將表示成的函數(shù);
(2)判斷弧AB上是否存在一點(diǎn),使建在此處的垃圾處理廠對(duì)城A和城B的總影響度最小?若存在,求出該點(diǎn)到城A的距離;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)求在點(diǎn)處的切線方程;
(Ⅱ)若存在,滿足成立,求的取值范圍;
(Ⅲ)當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)在點(diǎn)(1,f(1))處的切線方程為y = 2.
(I)求f(x)的解析式;
(II)設(shè)函數(shù)若對(duì)任意的,總存唯一實(shí)數(shù),使得,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案