已知數(shù)列{an}是公差不為零的等差數(shù)列,數(shù)列{bn}為等比數(shù)列,若b1=a1,b2=a5,b3=a17,則b4等于數(shù)列{an}中的第
53
53
項(xiàng).
分析:設(shè)數(shù)列{an}的公差d,數(shù)列{bn}的公比q,由已知,得出a1=2d.,q=3,再利用等差數(shù)列通項(xiàng)公式 解得n 即可.
解答:解:設(shè)數(shù)列{an}的公差d,數(shù)列{bn}的公比q,根據(jù)等比數(shù)列,等差數(shù)列通項(xiàng)公式,得出
b1=a1
b2=b1q=a1+4d②
b3=b1q2=a1+16d ③    
∵b1b3=b22∴a1(a1+16d)=(a1+4d)2
化簡(jiǎn)整理得出a1=2d.代入②得出q=3.b4=b1×33=27a1=a1+(n-1)×
a1
2
,解得n=53
故答案為:53.
點(diǎn)評(píng):本題考查等比數(shù)列,等差數(shù)列通項(xiàng)公式,等量代換的思想方法.是好題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義一個(gè)“等積數(shù)列”:在一個(gè)數(shù)列中,如果每一項(xiàng)與它后一項(xiàng)的積都是同一常數(shù),那么這個(gè)數(shù)列叫“等積數(shù)列”,這個(gè)常數(shù)叫做這個(gè)數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=2,公積為5,則這個(gè)數(shù)列的前n項(xiàng)和Sn的計(jì)算公式為:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

按照等差數(shù)列的定義我們可以定義“等和數(shù)列”:在一個(gè)數(shù)列中,如果每一項(xiàng)與它的后一項(xiàng)的和都為同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等和數(shù)列,這個(gè)常數(shù)叫做該數(shù)列的公和.已知數(shù)列{an}是等和數(shù)列,且a1=2,公和為5,那么a8的值為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在一個(gè)數(shù)列中,如果?n∈N*,都有an•an+1•an+2=k(k為常數(shù)),那么這個(gè)數(shù)列叫做等積數(shù)列,k叫做這個(gè)數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=1,a2=3,公積為27,則a1+a2+a3+…+a18=
78
78

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)數(shù)列,如果每一項(xiàng)與它的后一項(xiàng)的和都為同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等和數(shù)列,這個(gè)常數(shù)叫做該數(shù)列的公和.已知數(shù)列{an}是等和數(shù)列,且a1=2,公和為5,那么這個(gè)數(shù)列的前21項(xiàng)和S21的值為
52
52

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列的定義為:在一個(gè)數(shù)列中,從第二項(xiàng)起,如果每一項(xiàng)與它的前一項(xiàng)的差都為同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等差數(shù)列,這個(gè)常數(shù)叫做該數(shù)列的公差.
(1)類(lèi)比等差數(shù)列的定義給出“等和數(shù)列”的定義;
(2)已知數(shù)列{an}是等和數(shù)列,且a1=2,公和為5,求 a18的值,并猜出這個(gè)數(shù)列的通項(xiàng)公式(不要求證明).

查看答案和解析>>

同步練習(xí)冊(cè)答案