精英家教網 > 高中數學 > 題目詳情
(2012•黃浦區(qū)二模)現給出如下命題:
(1)若某音叉發(fā)出的聲波可用函數y=0.002sin800πt(t∈R+)描述,其中t的單位是秒,則該聲波的頻率是400赫茲;
(2)在△ABC中,若c2=a2+b2+ab,則∠C=
π
3
;
(3)從一個總體中隨機抽取一個樣本容量為10的樣本:11,10,12,10,9,8,9,11,12,8,則該總體標準差的點估計值是
2
5
3

則其中正確命題的序號是(  )
分析:(1)根據y=Asin(ωx+φ)中參數的物理意義求出函數的周期,進而可求頻率;
(2)利用余弦定理表示出cosC,將已知的等式變形后代入,由C為三角形的內角,利用特殊角的三角函數值即可求出C的度數;
(3)先計算平均數,再計算該總體標準差的點估計值即可.
解答:解:(1)根據三角函數的模型有關定義可得:該聲波的周期為T=
800π
=
1
400
,∴頻率是f=
1
T
=400赫茲,故(1)正確;
(2)∵c2=a2+b2+ab,即a2+b2-c2=-ab,∴由余弦定理得:cosC=-
1
2
,又∠C為三角形的內角,∴∠C=120°,故(2)不正確;
(3)這組數的平均數為
1
10
(11+10+12+10+9+8+9+11+12+8)
=10
∴該總體標準差的點估計值是
1
9
(1+4+1+4+1+1+4+4)
=
2
5
3
,故(3)正確.
綜上知:(1)(3)正確
故選B.
點評:本題主要考查了y=Asin(ωx+φ)中參數的物理意義,考查了周期和頻率;考查了余弦定理,以及特殊角的三角函數值,考查平均數與總體標準差的點估計值,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•黃浦區(qū)二模)已知α、β∈(0,
π
2
),若cos(α+β)=
5
13
,sin(α-β)=-
4
5
,則cos2α=
63
65
63
65

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•黃浦區(qū)二模)對n∈N*,定義函數fn(x)=-(x-n)2+n,n-1≤x≤n.
(1)求證:y=fn(x)圖象的右端點與y=fn+1(x)圖象的左端點重合;并回答這些端點在哪條直線上.
(2)若直線y=knx與函數fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的圖象有且僅有一個公共點,試將kn表示成n的函數.
(3)對n∈N*,n≥2,在區(qū)間[0,n]上定義函數y=f(x),使得當m-1≤x≤m(n∈N*,且m=1,2,…,n)時,f(x)=fm(x).試研究關于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的實數解的個數(這里的kn是(2)中的kn),并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•黃浦區(qū)二模)如圖,已知圓柱的軸截面ABB1A1是正方形,C是圓柱下底面弧AB的中點,C1是圓柱上底面弧A1B1的中點,那么異面直線AC1與BC所成角的正切值為
2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•黃浦區(qū)二模)已知函數f(x)=|x2-2ax+a|(x∈R),給出下列四個命題:
①當且僅當a=0時,f(x)是偶函數;
②函數f(x)一定存在零點;
③函數在區(qū)間(-∞,a]上單調遞減;
④當0<a<1時,函數f(x)的最小值為a-a2
那么所有真命題的序號是
①④
①④

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•黃浦區(qū)二模)函數f(x)=log
1
2
(2x+1)
的定義域為
(-
1
2
,+∞)
(-
1
2
,+∞)

查看答案和解析>>

同步練習冊答案