【題目】設(shè)函數(shù) ,若存在 同時滿足以下條件:①對任意的 ,都有 成立;② ,則 的取值范圍是

【答案】
【解析】∵對任意的 ,都有 成立,且 ∴對 成立,只需滿足 即可. ∵ ∴當(dāng) 時,

所以答案是


【考點精析】掌握函數(shù)的定義域及其求法和函數(shù)的值域是解答本題的根本,需要知道求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負(fù)值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當(dāng)對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零;求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最。ù螅⿺(shù),這個數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實質(zhì)是相同的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2= ,且直線l經(jīng)過曲線C的左焦點F. ( I )求直線l的普通方程;
(Ⅱ)設(shè)曲線C的內(nèi)接矩形的周長為L,求L的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ax+ (a∈R).
(1)當(dāng)a=﹣ 時,求函數(shù)f(x)的單調(diào)區(qū)間和極值.
(2)若g(x)=f(x)+a(x﹣1)有兩個零點x1 , x2 , 且x1<x2 , 求證:x1+x2>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1= ,若bn=log2an﹣2,則b1b2…bn的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0,b>0,函數(shù)f(x)=|x+a|+|2x﹣b|的最小值為1.
(1)求證:2a+b=2;
(2)若a+2b≥tab恒成立,求實數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列 滿足:① ;②所有項 ;③
設(shè)集合 ,將集合 中的元素的最大值記為 .換句話說,
數(shù)列 中滿足不等式 的所有項的項數(shù)的最大值.我們稱數(shù)列 為數(shù)列
伴隨數(shù)列.例如,數(shù)列1,3,5的伴隨數(shù)列為1,1,2,2,3.
(1)若數(shù)列 的伴隨數(shù)列為1,1,1,2,2,2,3,請寫出數(shù)列 ;
(2)設(shè) ,求數(shù)列 的伴隨數(shù)列 的前100之和;
(3)若數(shù)列 的前 項和 (其中 常數(shù)),試求數(shù)列 的伴隨數(shù)列 項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高中學(xué)校共有學(xué)生1800名,各年級男女學(xué)生人數(shù)如表.已知在全校學(xué)生中隨機(jī)抽取1名,抽到高二女生的概率是0.16.

高一年級

高二年級

高三年級

女生

324

x

280

男生

316

312

y

現(xiàn)用分層抽樣的方法,在全校抽取45名學(xué)生,則應(yīng)在高三抽取的學(xué)生人數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的通項公式為an=2n﹣1(n∈N*),且a2 , a5分別是等比數(shù)列{bn}的第二項和第三項,設(shè)數(shù)列{cn}滿足cn= ,{cn}的前n項和為Sn
(1)求數(shù)列{bn}的通項公式;
(2)是否存在m∈N* , 使得Sm=2017,并說明理由
(3)求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下四個命題: ①已知隨機(jī)變量X~N(0,σ2),若P(|X|<2)=a,則P(X>2)的值為 ;
②設(shè)a、b∈R,則“l(fā)og2a>log2b”是“2ab>1”的充分不必要條件;
③函數(shù)f(x)= ﹣( x的零點個數(shù)為1;
④命題p:n∈N,3n≥n2+1,則¬p為n∈N,3n≤n2+1.
其中真命題的序號為

查看答案和解析>>

同步練習(xí)冊答案