設(shè)函數(shù)f(x)=的最大值為M,最小值為m,則M+m=    .
2
f(x)=
=1+,
令g(x)=,
則g(x)為奇函數(shù),有g(shù)(x)max+g(x)min=0,
故M+m=2.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=mx+3,g(x)=x2+2x+m.
(1)求證:函數(shù)f(x)-g(x)必有零點;
(2)設(shè)函數(shù)G(x)=f(x)-g(x)-1,若|G(x)|在[-1,0]上是減函數(shù),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某學(xué)校擬建一塊周長為400m的操場,如圖所示,操場的兩頭是半圓形,中間區(qū)域是矩形,學(xué)生做操一般安排在矩形區(qū)域,為了能讓學(xué)生的做操區(qū)域盡可能大,試問如何設(shè)計矩形的長和寬?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)xy∈R,且4xy+4y2x+6=0,則x的取值范圍是 (  )
A.-3≤x≤2B.-2≤x≤3
C.x≤-2或x≥3D.x≤-3或x≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

知函數(shù)y=f(x)的值域為C,若函數(shù)x=g(t)使函數(shù)y=f[g(t)]的值域仍為C,則稱x=g(t)是y=f(x)的一個等值域變換,下列函數(shù)中,x=g(t)是y=f(x)的一個等值域變換的為(  )
A.f(x)=2x+b,x∈R,x=
B.f(x)=ex,x∈R,x=cost
C.f(x)=x2,x∈R,x=et
D.f(x)=|x|,x∈R,x=lnt

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知f(x)=x2-2017x+8052+|x2-2017x+8052|,則f(1)+f(2)+f(3)+…+f(2013)=    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

有一種新型的洗衣液,去污速度特別快.已知每投放k(1≤k≤4,且k∈R)個單位的洗衣液在一定量水的洗衣機(jī)中,它在水中釋放的濃度y(克/升)隨著時間x(分鐘)變化的函數(shù)關(guān)系式近似為y=k·f(x),其中f(x)=若多次投放,則某一時刻水中的洗衣液濃度為每次投放的洗衣液在相應(yīng)時刻所釋放的濃度之和.根據(jù)經(jīng)驗,當(dāng)水中洗衣液的濃度不低于4(克/升)時,它才能起到有效去污的作用.
(1)若只投放一次k個單位的洗衣液,兩分鐘時水中洗衣液的濃度為3(克/升),求k的值;
(2)若只投放一次4個單位的洗衣液,則有效去污時間可達(dá)幾分鐘?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某工廠產(chǎn)生的廢氣經(jīng)過過濾后排放,排放時污染物的含量不得超過1%.己知在過濾過程中廢氣中的污染物數(shù)量尸(單位:毫克/升)與過濾時間t(單位:小時)之間的函數(shù)關(guān)系為:P=P0e-kt,(k,P0均為正的常數(shù)).若在前5個小時的過濾過程中污染物被排除了90%.那么,至少還需( )時間過濾才可以排放.
A.小時B.小時C.5小時D.10小時

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=x+2x,g(x)=x+lnx的零點分別為x1,x2,則x1,x2的大小關(guān)系是(  )
A.x1<x2B.x1>x2
C.x1=x2D.不能確定

查看答案和解析>>

同步練習(xí)冊答案