設(shè)數(shù)列{an}中,a1=2,an+1=2an+3,則通項(xiàng)an可能是( 。
分析:由已知可得,an+1+3=2(an+3),數(shù)列{an+3}是以5為首項(xiàng),以2為公比的等比數(shù)列,結(jié)合等比數(shù)列的 通項(xiàng)可求an+1,進(jìn)而可求an
解答:解:∵a1=2,an+1=2an+3,
∴an+1+3=2(an+3),
∴數(shù)列{an+3}是以5為首項(xiàng),以2為公比的等比數(shù)列,
an+3=5•2n-1
an=5•2n-1-3
故選D
點(diǎn)評(píng):本題主要考查了利用數(shù)列的通項(xiàng)公式,解題的關(guān)鍵是構(gòu)造等比數(shù)列{an+3}
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}中,若an+1=an+an+2,(n∈N*),則稱數(shù)列{an}為“凸數(shù)列”.
(1)設(shè)數(shù)列{an}為“凸數(shù)列”,若a1=1,a2=-2,試寫出該數(shù)列的前6項(xiàng),并求出該6項(xiàng)之和;
(2)在“凸數(shù)列”{an}中,求證:an+6=an,n∈N*;
(3)設(shè)a1=a,a2=b,若數(shù)列{an}為“凸數(shù)列”,求數(shù)列前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}中,若an+1=an+an+2,(n∈N*),則稱數(shù)列{an}為“凸數(shù)列”.
(1)設(shè)數(shù)列{an}為“凸數(shù)列”,若a1=1,a2=-2,試寫出該數(shù)列的前6項(xiàng),并求出該6項(xiàng)之和;
(2)在“凸數(shù)列”{an}中,求證:an+3=-an,n∈N*
(3)設(shè)a1=a,a2=b,若數(shù)列{an}為“凸數(shù)列”,求數(shù)列前2010項(xiàng)和S2010

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}中,a1=1,an+1=
an
1+2an
,則a2012=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a 1=
1
3
,并且對(duì)任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{
an
n
}的前n項(xiàng)和為Tn,證明:
1
3
Tn
3
4

查看答案和解析>>

同步練習(xí)冊(cè)答案