【題目】已知拋物線過點(2,1)且關于軸對稱.

(1)求拋物線的方程;

(2)已知圓過定點,圓心在拋物線上運動,且圓軸交于兩點,設,求的最大值.

【答案】(1);(2)當時最大值為.

【解析】試題分析:(1)設出拋物線的標準形式,代入已知點坐標即可求解;

(2)(2)設M(a,b),則a2=4b.半徑R=,可得 M的方程為(x-a)2+(y-b)2=a2+(b-2)2,令y=0,解得x,可得A,B.利用兩點之間的距離公式可得:l1,l2.代入利用基本不等式的性質(zhì)即可得出.

試題解析:

(1)設拋物線方程為:

代入點(2,1),解得p=2,所以有: ;

(2)設圓M的圓心坐標為,則

圓M的半徑為

圓M的方程為

,則

整理得

由①②解得,

不妨設

所以,

所以,

當且僅當,即時取等號,

時,,

綜上可知,當時,所求最大值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知奇函數(shù)f(x)在(﹣∞,0)上單調(diào)遞減,且f(2)=0,則不等式(x﹣1)f(x﹣1)>0的解集是(
A.(﹣3,﹣1)
B.(﹣1,1)∪(1,3)
C.(﹣3,0)∪(3,+∞)
D.(﹣3,1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圓O1和圓O2的極坐標方程分別為ρ=4cosθ,ρ=-4sinθ
(1)把圓O1和圓O2的極坐標方程化為直角坐標方程;
(2)求經(jīng)過圓O1、圓O2交點的直線的直角坐標方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,已知曲線 ,求:
(1)兩曲線(含直線)的公共點 P 的極坐標
(2)過點 P ,被曲線 截得的弦長為 的直線的極坐標方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某產(chǎn)品的三個質(zhì)量指標分別為x,y,z,用綜合指標S=x+y+z評價該產(chǎn)品的等級.若S≤4,則該產(chǎn)品為一等品.現(xiàn)從一批該產(chǎn)品中,隨機抽取10件產(chǎn)品作為樣本,其質(zhì)量指標列表如下:

產(chǎn)品編號

A1

A2

A3

A4

A5

質(zhì)量指標
x , y , z

(1,1,2)

(2,1,1)

(2,2,2)

(1,1,1)

(1,2,1)

產(chǎn)品編號

A6

A7

A8

A9

A10

質(zhì)量指標
x , yz

(1,2,2)

(2,1,1)

(2,2,1)

(1,1,1)

(2,1,2)


(1)利用上表提供的樣本數(shù)據(jù)估計該批產(chǎn)品的一等品率.
(2)在該樣品的一等品中,隨機抽取2件產(chǎn)品, ①用產(chǎn)品編號列出所有可能的結(jié)果;
②設事件B為“在取出的2件產(chǎn)品中,每件產(chǎn)品的綜合指標S都等于4”,求事件B發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的外接圓半徑,角ABC的對邊分別是a、b、c,且.

I)求角B和邊長b;

II)求面積的最大值及取得最大值時的ac的值,并判斷此時三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)y=f(x)的定義域是[0,4],則函數(shù)g(x)= 的定義域是(
A.[0,2]
B.[0,2)
C.[0,1)∪(1,2]
D.[0,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,AB , C是三個觀察站,AB的正東,兩地相距6km,CB的北偏西30°,兩地相距4km,在某一時刻,A觀察站發(fā)現(xiàn)某種信號,并知道該信號的傳播速度為1km/s,4s后B , C兩個觀察站同時發(fā)現(xiàn)這種信號,在以過AB兩點的直線為x軸,以AB的垂直平分線為y軸建立的平面直角坐標系中,指出發(fā)出這種信號的P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知全集U={x|x2﹣3x+2≥0},A={x||x﹣2|>1},B=
求:
(1)A∩B;
(2)A∩UB;
(3)U(A∪B).

查看答案和解析>>

同步練習冊答案