(2007
上海,21)我們把由半橢圓(x≥0)與半橢圓(x≤0)合成的曲線稱作“果圓”,其中,a>0,b>c>0.如下圖,點是相應橢圓的焦點,分別是“果圓”與x、y軸的交點.(1)
若△是邊長為1的等邊三角形,求“果圓”的方程;(2)
當時,求的取值范圍;(3)
連接“果圓”上任意兩點的線段稱為“果圓”的弦.試研究:是否存在實數(shù)k,使斜率為k的“果圓”平行弦的中點軌跡總是落在某個橢圓上?若存在,求出所有可能的k值;若不存在,說明理由.湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com