已知函數(shù)的導(dǎo)函數(shù)為 ,滿足 ,且,則的單調(diào)性情況為
A.先增后減      B單調(diào)遞增         C.單調(diào)遞減      D先減后增

C

解析試題分析:由知,,故=,所以=,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2d/ef/2d8ef2152b395875ccd0532b1927eac7.png" style="vertical-align:middle;" />,所以c=,所以=,所以 ==,設(shè)=,所以=
當(dāng)0<時(shí),>0,當(dāng)時(shí),<0,則在(0,)是增函數(shù),在(,+)上是減函數(shù),所以當(dāng)時(shí),取最大值=0,所以當(dāng)>0時(shí),≤0,即≤0,所以單調(diào)遞減,故選C.
考點(diǎn):常見(jiàn)函數(shù)的導(dǎo)數(shù),導(dǎo)數(shù)的運(yùn)算法則,導(dǎo)數(shù)的綜合運(yùn)用

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知二次函數(shù)的圖像經(jīng)過(guò)坐標(biāo)原點(diǎn),且滿足,設(shè)函數(shù),其中m為常數(shù)且
(1)求函數(shù)的解析式;
(2)判斷函數(shù)的單調(diào)性并說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知二次函數(shù)f(x)=ax2+bx+c.
(1)若f(-1)=0,試判斷函數(shù)f(x)零點(diǎn)的個(gè)數(shù);
(2)是否存在a,b,c∈R,使f(x)同時(shí)滿足以下條件:
①對(duì)任意x∈R,f(-1+x)=f(-1-x),且f(x)≥0;
②對(duì)任意x∈R,都有0≤f(x)-x≤(x-1)2.若存在,求出a,b,c的值;若不存在,請(qǐng)說(shuō)
明理由。
(3)若對(duì)任意x1、x2∈R且x1<x2,f(x1)≠f(x2),試證明:存在x0∈(x1,x2),使f(x0)=[f(x1)+f(x2)]成立。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

曲線f(x)=x3+x﹣2在p0處的切線平行于直線y=4x﹣1,則p0的坐標(biāo)為( )

A.(1,0)B.(2,8)
C.(1,0)或(﹣1,﹣4)D.(2,8)或(﹣1,﹣4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知函數(shù)對(duì)任意的滿足(其中是函數(shù)的導(dǎo)函數(shù)),則下列不等式成立的是(  )

A. B.
C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

由直線與曲線所圍成的封閉圖形的面積為(   )

A.1B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

若函數(shù)的圖象在處的切線與圓相切,則的最大值是(  )

A.4 B. C.2 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

,則的大小關(guān)系為(   )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),在區(qū)間上有最大值5,最小
值2。
(1)求a,b的值。
(2)若上單調(diào),求的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案