【題目】設(shè)曲線y=xn+1(n∈N*)在點(diǎn)(1,1)處的切線與x軸的交點(diǎn)的橫坐標(biāo)為xn , 令an=lgxn , 則a1+a2+…+a99的值為

【答案】-2
【解析】解:∵曲線y=xn+1(n∈N*), ∴y′=(n+1)xn , ∴f′(1)=n+1,
∴曲線y=xn+1(n∈N*)在(1,1)處的切線方程為y﹣1=(n+1)(x﹣1),
該切線與x軸的交點(diǎn)的橫坐標(biāo)為xn= ,
∵an=lgxn ,
∴an=lgn﹣lg(n+1),
∴a1+a2+…+a99
=(lg1﹣lg2)+(lg2﹣lg3)+(lg3﹣lg4)+(lg4﹣lg5)+(lg5﹣lg6)+…+(lg99﹣lg100)
=lg1﹣lg100=﹣2.
所以答案是:﹣2.
【考點(diǎn)精析】關(guān)于本題考查的數(shù)列的前n項(xiàng)和,需要了解數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1=1,an+1=
(1)證明:數(shù)列{a2n }是等比數(shù)列;
(2)求a2n及a2n1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= +ax,x>1.
(1)若函數(shù)f(x)在 處取得極值,求a的值;
(2)若方程(2x﹣m)lnx+x=0在(1,e]上有兩個(gè)不等實(shí)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若圓C:x2+(y﹣2)2=5與恒過點(diǎn)P(0,1)的直線交于A,B兩點(diǎn),則弦AB的中點(diǎn)M的軌跡方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】游樂場推出了一項(xiàng)趣味活動(dòng),參加活動(dòng)者需轉(zhuǎn)動(dòng)如圖所示的轉(zhuǎn)盤兩次,每次轉(zhuǎn)動(dòng)后,待轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),記錄指針?biāo)竻^(qū)域中的數(shù),設(shè)兩次記錄的數(shù)分別為x,y,獎(jiǎng)勵(lì)規(guī)則如下:
①若xy≤3,則獎(jiǎng)勵(lì)玩具一個(gè);②若xy≥8,則獎(jiǎng)勵(lì)水杯一個(gè);③其余情況獎(jiǎng)勵(lì)飲料一瓶,假設(shè)轉(zhuǎn)盤質(zhì)地均勻,四個(gè)區(qū)域劃分均勻,小亮準(zhǔn)備參加此項(xiàng)活動(dòng).
(Ⅰ)求小亮獲得玩具的概率;
(Ⅱ)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= +lnx,其中a為常數(shù),e為自然對數(shù)的底數(shù).
(I)若a=1,求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在[﹣1,1]上的奇函數(shù),f(﹣1)=﹣1,且對任意a,b∈[﹣1,1],當(dāng)a≠b時(shí),都有 ;
(1)解不等式f ;
(2)若f(x)≤m2﹣2km+1對所有x∈[﹣1,1],k∈[﹣1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個(gè)正方形ABCD和ADEF所在平面互相垂直,設(shè)M、N分別是BD和AE的中點(diǎn),那么①AD⊥MN;②MN∥平面CDE;③MN∥CE;④MN、CE異面.其中假命題的個(gè)數(shù)為( )

A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)、g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時(shí),f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,則不等式f(x)g(x)<0的解集是( )
A.(﹣3,0)∪(3,+∞)
B.(﹣3,0)∪(0,3)
C.(﹣∞,﹣3)∪(3,+∞)
D.(﹣∞,﹣3)∪(0,3)

查看答案和解析>>

同步練習(xí)冊答案