【題目】已知函數(shù),.
(1)若,求的最大值;
(2)當(dāng)時(shí),求證:.
【答案】(1) (2)見解析
【解析】分析:(1)給定區(qū)間求最值需先求導(dǎo)判出在相應(yīng)區(qū)間上的單調(diào)性;
(2)構(gòu)造新函數(shù),運(yùn)用放縮進(jìn)行處理。先證,又由,,所以。
詳解:(1)解:當(dāng)時(shí),,
由,得,所以時(shí),;時(shí),,
因此的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,
的最大值為 .
(2)證明:先證,
令,
則 ,
由,與的圖象易知,存在,使得,
故時(shí),;時(shí),,
所以的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,
所以的最大值為,
而,.
又由,,所以,
當(dāng)且僅當(dāng),取“=”成立,即.
點(diǎn)晴:導(dǎo)數(shù)是做題的工具,在解決問題時(shí),一般首先要對(duì)題干的轉(zhuǎn)化,帶著目標(biāo)做下手,一般都是轉(zhuǎn)化成最值的問題,然后最值的問題都是利用單調(diào)性去解決
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是由非負(fù)整數(shù)組成的無窮數(shù)列,對(duì)每一個(gè)正整數(shù),該數(shù)列前項(xiàng)的最大值記為,第項(xiàng)之后各項(xiàng)的最小值記為,記.
(1)若數(shù)列的通項(xiàng)公式為,求數(shù)列的通項(xiàng)公式;
(2)證明:“數(shù)列單調(diào)遞增”是“”的充要條件;
(3)若對(duì)任意恒成立,證明:數(shù)列的通項(xiàng)公式為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(1)寫出的普通方程和的直角坐標(biāo)方程;
(2)若與相交于兩點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多有創(chuàng)意的求法,如著名的普豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),我們也可以通過設(shè)計(jì)下面的實(shí)驗(yàn)來估計(jì)的值:先請(qǐng)120名同學(xué)每人隨機(jī)寫下一個(gè)x,y都小于1的正實(shí)數(shù)對(duì),再統(tǒng)計(jì)其中x,y能與1構(gòu)成鈍角三角形三邊的數(shù)對(duì)的個(gè)數(shù)m,最后根據(jù)統(tǒng)計(jì)個(gè)數(shù)m估計(jì)的值.如果統(tǒng)計(jì)結(jié)果是,那么可以估計(jì)的值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)已知圓,圓,動(dòng)圓與圓外切并且與圓內(nèi)切,圓心的軌跡為曲線.
(Ⅰ)求的方程;
(Ⅱ)是與圓,圓都相切的一條直線,與曲線交于,兩點(diǎn),當(dāng)圓的半徑最長(zhǎng)時(shí),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知傾斜角為的直線過點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.曲線的極坐標(biāo)方程為,直線與曲線分別交于、兩點(diǎn).
(1)寫出直線的參數(shù)方程和曲線的直角坐標(biāo)方程;
(2)若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一款擊鼓小游戲的規(guī)則如下:每盤游戲都需擊鼓三次,每次擊鼓后要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)三次音樂獲得150分,出現(xiàn)兩次音樂獲得100分,出現(xiàn)一次音樂獲得50分,沒有出現(xiàn)音樂則獲得-300分.設(shè)每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓出現(xiàn)音樂相互獨(dú)立.
(1)若一盤游戲中僅出現(xiàn)一次音樂的概率為,求的最大值點(diǎn);
(2)以(1)中確定的作為的值,玩3盤游戲,出現(xiàn)音樂的盤數(shù)為隨機(jī)變量,求每盤游戲出現(xiàn)音樂的概率,及隨機(jī)變量的期望;
(3)玩過這款游戲的許多人都發(fā)現(xiàn),若干盤游戲后,與最初的分?jǐn)?shù)相比,分?jǐn)?shù)沒有增加反而減少了.請(qǐng)運(yùn)用概率統(tǒng)計(jì)的相關(guān)知識(shí)分析分?jǐn)?shù)減少的原因.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科站技術(shù)員為了解某品種樹苗的生長(zhǎng)情況,在該批樹苗中隨機(jī)抽取一個(gè)容量為100的樣本,測(cè)量樹苗高度(單位:).經(jīng)統(tǒng)計(jì),高度在區(qū)間內(nèi),將其按,,,,,分成6組,制成如圖所示的頻率分布直方圖,其中高度不低于的樹苗為優(yōu)質(zhì)樹苗.
附:
,其中
(1)求頻率分布直方圖中的值;
(2)已知所抽取的這100棵樹苗來自于甲、乙兩個(gè)地區(qū),部分?jǐn)?shù)據(jù)如下列聯(lián)表所示,將列聯(lián)表補(bǔ)充完整,并根據(jù)列聯(lián)表判斷是否有%的把握認(rèn)為優(yōu)質(zhì)樹苗與地區(qū)有關(guān)?
甲地區(qū) | 乙地區(qū) | 合計(jì) | |
優(yōu)質(zhì)樹苗 | 5 | ||
非優(yōu)質(zhì)樹苗 | 25 | ||
合計(jì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某次數(shù)學(xué)知識(shí)比賽中共有6個(gè)不同的題目,每位同學(xué)從中隨機(jī)抽取3個(gè)題目進(jìn)行作答,已知這6個(gè)題目中,甲只能正確作答其中的4個(gè),而乙正確作答每個(gè)題目的概率均為,且甲、乙兩位同學(xué)對(duì)每個(gè)題目的作答都是相互獨(dú)立、互不影響的.
(1)求甲、乙兩位同學(xué)總共正確作答3個(gè)題目的概率;
(2)若甲、乙兩位同學(xué)答對(duì)題目個(gè)數(shù)分別是,,由于甲所在班級(jí)少一名學(xué)生參賽,故甲答對(duì)一題得15分,乙答對(duì)一題得10分,求甲乙兩人得分之和的期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com