【題目】通過隨機(jī)詢問名不同性別的大學(xué)生是否愛好某項(xiàng)運(yùn)動,得到如下的列聯(lián)表:

愛好

40

20

不愛好

20

30

算得,

參照附表,以下不正確的有(

附表:

0.050

0.010

0.001

3.841

6.635

10.828

A.在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為愛好該項(xiàng)運(yùn)動與性別有關(guān)

B.在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為愛好該項(xiàng)運(yùn)動與性別無關(guān)

C.以上的把握認(rèn)為愛好該項(xiàng)運(yùn)動與性別有關(guān)

D.以上的把握認(rèn)為愛好該項(xiàng)運(yùn)動與性別無關(guān)

【答案】BCD

【解析】

通過所給的觀測值,同臨界值表中的數(shù)據(jù)進(jìn)行比較,發(fā)現(xiàn),即可得到結(jié)論.

∵計(jì)算,則,

∴在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為愛好該項(xiàng)運(yùn)動與性別有關(guān),

正確,錯(cuò)誤;

又∵

∴有以上的把握認(rèn)為愛好該項(xiàng)運(yùn)動與性別有關(guān)錯(cuò)誤,即C錯(cuò)誤;

以上的把握認(rèn)為愛好該項(xiàng)運(yùn)動與性別無關(guān)錯(cuò)誤,即D錯(cuò)誤.

故選:BCD.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),求:

(1)函數(shù)的圖象在點(diǎn)(0,-2)處的切線方程;

(2)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD的邊長為4MAD的中點(diǎn),動點(diǎn)N在正方形ABCD的內(nèi)部或其邊界移動,并且滿足,則的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)求的極值;

2)若時(shí),的單調(diào)性相同,求的取值范圍;

3)當(dāng)時(shí),函數(shù)有最小值,記的最小值為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線的參數(shù)方程為:為參數(shù),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為:,直線與曲線交于A,B兩點(diǎn),

求曲線的普通方程及的最小值;

若點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省高考改革新方案,不分文理科,高考成績實(shí)行“”的構(gòu)成模式,第一個(gè)“3”是語文、數(shù)學(xué)、外語,每門滿分150分,第二個(gè)“3”由考生在思想政治、歷史、地理、物理、化學(xué)、生物6個(gè)科目中自主選擇其中3個(gè)科目參加等級性考試,每門滿分100分,高考錄取成績卷面總分滿分750分.為了調(diào)查學(xué)生對物理、化學(xué)、生物的選考情況,將“某市某一屆學(xué)生在物理、化學(xué)、生物三個(gè)科目中至少選考一科的學(xué)生”記作學(xué)生群體,從學(xué)生群體中隨機(jī)抽取了50名學(xué)生進(jìn)行調(diào)查,他們選考物理,化學(xué),生物的科目數(shù)及人數(shù)統(tǒng)計(jì)如下表:

(I)從所調(diào)查的50名學(xué)生中任選2名,求他們選考物理、化學(xué)、生物科目數(shù)量不相等的概率;

(II)從所調(diào)查的50名學(xué)生中任選2名,記表示這2名學(xué)生選考物理、化學(xué)、生物的科目數(shù)量之差的絕對值,求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(III)將頻率視為概率,現(xiàn)從學(xué)生群體中隨機(jī)抽取4名學(xué)生,記其中恰好選考物理、化學(xué)、生物中的兩科目的學(xué)生數(shù)記作,求事件“”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在區(qū)間上是增函數(shù).

(1)求實(shí)數(shù)的值組成的集合

(2)設(shè)關(guān)于的方程的兩個(gè)非零實(shí)根為、試問:是否存在實(shí)數(shù),使得不等式對任意 恒成立?若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為迎接2022年北京冬季奧運(yùn)會,普及冬奧知識,某校開展了冰雪答題王冬奧知識競賽活動.現(xiàn)從參加冬奧知識競賽活動的學(xué)生中隨機(jī)抽取了100名學(xué)生,將他們的比賽成績(滿分為100分),分為6組:,,,,得到如圖所示的頻率分布直方圖.

1)求的值;

2)記表示事件從參加冬奧知識競賽活動的學(xué)生中隨機(jī)抽取一名學(xué)生,該學(xué)生的比賽成績不低于80,估計(jì)的概率;

3)在抽取的100名學(xué)生中,規(guī)定:比賽成績不低于80分為優(yōu)秀”’,比賽成績低于80分為非優(yōu)秀”.請將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有99.9%的把握認(rèn)為比賽成績是否優(yōu)秀與性別有關(guān)”?

優(yōu)秀

非優(yōu)秀

合計(jì)

男生

40

女生

50

合計(jì)

100

參考公式及數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)為坐標(biāo)原點(diǎn),直線經(jīng)過拋物線的焦點(diǎn).

1)若點(diǎn)到直線的距離為, 求直線的方程;

2)設(shè)點(diǎn)是直線與拋物線在第一象限的交點(diǎn).點(diǎn)是以點(diǎn)為圓心,為半徑的圓與軸負(fù)半軸的交點(diǎn).試判斷直線與拋物線的位置關(guān)系,并給出證明.

查看答案和解析>>

同步練習(xí)冊答案