【題目】在如圖所示的多面體中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC.BC=2AD=4,EF=3,AE=BE=2,G為BC的中點.
(1)求證:AB∥平面DEG;
(2)求證:BD⊥EG;
(3)求二面角C﹣DF﹣E的正弦值.

【答案】
(1)證明:∵AD∥EF,EF∥BC,∴AD∥BC,

∵BC=2AD,G為BC的中點,∴AD∥BG,且AD=BG,∴四邊形ABCD是平行四邊形,∴AB∥DG

因為AB不在平面DEG中,DG在平面DEG內(nèi),∴AB∥平面DEG


(2)證明:∵EF⊥平面AEB,AE平面AEB,BE平面AEB,

∴EF⊥AE,EF⊥BE,∵AE⊥EB,∴EB、EF、EA兩兩垂直.

以點E為坐標原點,EB、EF、EA所在直線分別為x、y、z軸建立空間直角坐標系,

由已知得:A(0,0,2),B(2,0,0),C(2,4,0),D(0,2,2),F(xiàn)(0,3,0),G(2,2,0).

,∴

∴BD⊥EG


(3)解:由已知得 是平面EFDA的法向量,設(shè)平面DCF的法向量為

,∴ ,令z=1,得x=﹣1,y=2,即

設(shè)二面角C﹣DF﹣E的大小為θ,

,∴

∴二面角C﹣DF﹣E的正弦值為


【解析】(1)要證AB∥平面DEG,可在平面DEG中找到一條直線與AB平行,根據(jù)題目給出的條件,能夠證得AB∥DG;(2)根據(jù)題目條件先證明EB、EA、EF兩兩相互垂直,然后以E為原點,以EB、EF、EA所在直線分別為x、y、z軸建立空間直角坐標系,運用向量數(shù)量積等于0 ,從而證明BD⊥EG;(3)在(2)的基礎(chǔ)上,求出二面角的兩個半平面的法向量,利用法向量求二面角的平面角的余弦值.
【考點精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行,以及對直線與平面垂直的性質(zhì)的理解,了解垂直于同一個平面的兩條直線平行.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】長方體ABCD﹣A1B1C1D1中,底面ABCD是邊長為2的正方形,高為4,則頂點A1到截面AB1D1的距離為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=Asin(ωx+φ)在一個周期內(nèi)的圖象如圖,此函數(shù)的解析式為(
A.y=2sin(2x+
B.y=2sin(2x+
C.y=2sin(
D.y=2sin(2x﹣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設(shè)Ox、Oy是平面內(nèi)相交成45°角的兩條數(shù)軸, 、 分別是x軸、y軸正方向同向的單位向量,若向量 =x +y ,則把有序數(shù)對(x,y)叫做向量 在坐標系xOy中的坐標,在此坐標系下,假設(shè) =(﹣2,2 ), =(2,0), =(5,﹣3 ),則下列命題不正確的是(
A. =(1,0)
B.| |=2
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= cos4x+2sinxcosx﹣ sin4x.
(1)當x∈[0, ]時,求f(x)的最大值、最小值以及取得最值時的x值;
(2)設(shè)g(x)=3﹣2m+mcos(2x﹣ )(m>0),若對于任意x1∈[0, ],都存在x2∈[0, ],使得f(x1)=g(x2)成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:數(shù)列{an}前n項的乘積Tn=a1a2…an , 數(shù)列an=29n , 則下面的等式中正確的是(
A.T1=T19
B.T3=T17
C.T5=T12
D.T8=T11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)命題p:函數(shù)f(x)=lg(ax2﹣x+ )的值域為R;命題q:3x﹣9x<a對一切實數(shù)x恒成立,如果命題“p且q”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C的方程:x2+y2﹣2x﹣4y+m=0,其中m<5.
(1)若圓C與直線l:x+2y﹣4=0相交于M,N兩點,且|MN|= ,求m的值;
(2)在(1)條件下,是否存在直線l:x﹣2y+c=0,使得圓上有四點到直線l的距離為 ,若存在,求出c的范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知如表為“五點法”繪制函數(shù)f(x)=Asin(ωx+φ)圖象時的五個關(guān)鍵點的坐標(其中A>0,ω>0,|φ|<π)

x

f(x)

0

2

0

﹣2

0

(Ⅰ)請寫出函數(shù)f(x)的最小正周期和解析式;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅲ)求函數(shù)f(x)在區(qū)間[0, ]上的取值范圍.

查看答案和解析>>

同步練習冊答案