已知是長軸為4的橢圓上的三點(diǎn),點(diǎn)是長軸的一個頂點(diǎn),過橢圓中心 (如圖),且,
(I)求橢圓的方程;
(Ⅱ)如果橢圓上的兩點(diǎn),使的平分線垂直于,是否總存在實(shí)數(shù),使。請給出證明。

由條件,設(shè)所求的橢圓方程為 其 中         
, 則,且   代入橢圓方程得   
即橢圓方程為
(Ⅱ)若的平分線垂直于,則傾斜角互補(bǔ),設(shè)所在的直線方程為           由方程組
    可得      
,代入中可得
同理可得

     總存在使
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過圓外一點(diǎn),作圓的割線,求割線被圓截得的弦的中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上,斜率為的直線交兩點(diǎn),若,且以為直徑的圓經(jīng)過原點(diǎn),求直線和拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如果雙曲線的兩個焦點(diǎn)分別為,一條漸近線方程為,則該雙曲線的方程為________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)圓O1和圓O2是兩個定圓,動圓P與這兩個定圓都相切,則圓P的圓心軌跡不可能是(    )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的中心在原點(diǎn),左焦點(diǎn)為F1,其右焦點(diǎn)F2和右準(zhǔn)線分別是拋物線的頂點(diǎn)和準(zhǔn)線.
⑴求橢圓C的方程;
⑵若點(diǎn)P為橢圓上C的點(diǎn),△PF1F2的內(nèi)切圓的半徑為,求點(diǎn)Px軸的距離;
⑶若點(diǎn)P為橢圓C上的一個動點(diǎn),當(dāng)∠F1PF2為鈍角時求點(diǎn)P的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線C:y2=4x.
(1)若橢圓左焦點(diǎn)及相應(yīng)的準(zhǔn)線與拋物線C的焦點(diǎn)F及準(zhǔn)線l分別重合,試求橢圓短軸端點(diǎn)B與焦點(diǎn)F連線中點(diǎn)P的軌跡方程;
(2)若M(m,0)是x軸上的一定點(diǎn),Q是(1)所求軌跡上任一點(diǎn),試問|MQ|有無最小值?若有,求出其值;若沒有,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓上一點(diǎn),它到左準(zhǔn)線的距離為,求點(diǎn)到右焦點(diǎn)的距離.

查看答案和解析>>

同步練習(xí)冊答案